
  

Abstract— A hybrid filtered basis function (FBF) approach is 

proposed in this paper for feedforward tracking control of linear 

systems with unmodeled nonlinear dynamics. Unlike most 

available tracking control techniques, the FBF approach is very 

versatile; it is applicable to any type of linear system, regardless 

of its underlying dynamics. The FBF approach expresses the 

control input to a system as a linear combination of basis 

functions with unknown coefficients. The basis functions are 

forward filtered through a linear model of the system’s dynamics 

and the unknown coefficients are selected such that tracking 

error is minimized. The linear models used in existing 

implementations of the FBF approach are typically physics-

based representations of the linear dynamics of a system. The 

proposed hybrid FBF approach expands the application of the 

FBF approach to systems with unmodeled nonlinearities by 

learning from data. A hybrid model is formulated by combining 

a physics-based model of the system’s linear dynamics with a 

data-driven linear model that approximates the unmodeled 

nonlinear dynamics. The hybrid model is used online in receding 

horizon to compute optimal control commands that minimize 

tracking errors. The proposed hybrid FBF approach is shown in 

simulations on a model of a vibration-prone 3D printer to 

improve tracking accuracy by up to 65.4%, compared to an 

existing FBF approach that does not incorporate data. 

I. INTRODUCTION 

Tracking control is important in a wide range of automated 
systems. It aims at forcing a system’s output to follow a 
defined reference by minimizing the tracking error, i.e., the 
error between the output and the reference. Tracking control 
can be performed using either feedforward (FF) or feedback 
(FB) approaches. Compared to FB approaches, which perform 
compensation after measuring errors, FF methods have the 
advantage of being able to pre-emptively cancel out the 
tracking errors using the system’s model, and thus yield 
theoretically zero tracking error. 

Perfect FF tracking control can be achieved by designing 
the controller to be the exact inverse of the system dynamics. 
However, exact inversion of system dynamics is usually 
problematic due to the uncancellable zeroes in the system 
dynamics [1]–[3]. Therefore, various FF controllers have been 
proposed in the literature to realize approximate model 
inversion. They include the zero magnitude error tracking 

controller (ZMETC), zero phase error tracking controller 
(ZPETC) [4], [5], extended bandwidth ZPETC [6], model 
matching [7], and the filtered basis functions (FBF) approach 
[8], [9], etc. Of the existing methods, the FBF approach stands 
out because of its versatility. It can handle any linear dynamics 
with excellent tracking performance [8]; it is also capable of 
minimizing control effort and enhancing robustness by 
choosing or designing different basis functions [10]–[12]. The 
FBF approach expresses the control input as a linear 
combination of basis functions with unknown coefficients. 
The basis functions are forward filtered through a linear model 
of the system’s dynamics, and the unknown coefficients are 
selected such that tracking error is minimized [8]. A version of 
FBF, named filtered B-spline (FBS), uses B-splines as the 
basis to enable the implementation of the FBF approach in 
small batches (via receding horizon) [9]. This reduces the 
computational burden of the FBF approach and allows its 
online implementation for tracking lengthy reference signals. 
The FBS approach was implemented on a 3D printer in [9], 
leading to significant reductions in vibration-induced tracking 
errors. However, the existing FBF approaches, like other linear 
FF controllers, cannot handle nonlinearity or other unmodeled 
dynamics. The nonlinearity and unmodeled dynamics are 
prevalent in practical applications, such as friction in 3D 
printers. Hence, when applied to systems with significant 
unmodeled nonlinearity, the performance of the FBF 
controller degrades significantly.  

With the growing availability of data in automated 
systems, methods that combine physics-based and data-driven 
(e.g., machine learning) approaches are gaining attention [13], 
[14]. For example, low-cost accelerometers could be added to 
the 3D printer studied in [9] to gather data online about its 
vibration. When data is available, a common approach used in 
tracking control is to tune or adapt the parameters of a linear 
physics-based model online using the data [15]–[18]. 
However, these approaches are unable to incorporate 
unmodeled dynamics that are non-parametric. Besides, several 
of these methods are based on iterative learning [16], [17], and 
hence, are not applicable to non-repeating trajectories.  

To address these weaknesses of existing FF techniques, the 
authors have recently proposed a linear hybrid model, 
comprising a physics-based and data-driven model, for linear 
systems with unmodeled nonlinear dynamics [19]. The linear 
portion of the system’s dynamics was modeled using the 
physics-based component of the hybrid model, while the 
unmodeled nonlinear portion was derived from its data-driven 
component. The hybrid model was shown in simulations and 
experiments to provide significantly improved predictions of 
servo errors in motion systems with unmodeled nonlinearity. 
However, the hybrid model was only used for error prediction 
but not for control. Therefore, as its primary contributions, this 
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1. Proposes a hybrid FBF controller that uses a combination 
of physics-based and data-driven linear models (i.e., a 
linear hybrid model) to minimize tracking errors via FF 
control performed online in receding horizons. 

2. Demonstrates in simulations (using a model of a 3D 
printer) up to 65.4% improvement of tracking accuracy 
using the proposed hybrid FBF compared to a standard 
FBF controller that does not incorporate data. 

The outline of the paper is as follows: In Section II, an 
overview of the linear hybrid model from the authors’ prior 
work is presented. Section III reviews the FBF controller and 
its receding horizon implementation and introduces the overall 
framework of the proposed hybrid FBF approach.  Improved 
tracking performance using the proposed hybrid FBF 
controller is demonstrated via simulations in Section IV, 
followed by the conclusions and the future work in Section V.  

II. OVERVIEW OF THE LINEAR HYBRID MODEL 

Consider a stable and causal SISO dynamic system H 
containing linear dynamics HL and unmodeled nonlinear 
dynamics HNL, as shown in Fig. 1. The system is sampled at 
interval Ts; u(k) and y(k), where k = 0, 1, 2, …, are the input 
and output of H at time step k, respectively. Also, the inputs 
and outputs are fed into and measured from the system in small 
batches, denoted by the superscript (j), i.e., 

y(j)= [y(jNp), y(jNp+1), …, y ((j+1)Np − 1)]
T

, (1) 

where Np is the number of time steps in one batch and j = 0, 1, 
2, … is the batch index.  

 
Fig. 1 General framework of the linear hybrid model [19] 

Assume that HL is accurately modeled by a physics-based 
model Gpb, which can be a transfer function, a state space 
model, or a lifted system representation, with its prediction 
denoted by ŷpb, while HNL is unmodeled. Note that the hat 
accent on y means the prediction of the response by models. 
To account for the prediction error due to HNL, a more accurate 
hybrid model Gh was introduced in [19]. The hybrid model Gh 
linearly cascades the physics-based model Gpb and a data-
driven model Gdd to enhance the prediction, as shown in Fig. 1. 
The data-driven model makes use of the past batch of system 
outputs (obtained online), as well as the past and the current 
predictions of Gpb. Accordingly, the prediction of the linear 
hybrid model in the j-th batch, denoted as ŷh

(j), is given by 

ŷ
h

(j)
 = Gdd (ŷ

pb

(j−1)
, ŷ

pb

(j)
, y(j−1)) 

= Gdd(Gpbu
(j−1),Gpbu

(j), y(j−1)) 

= Gh(u
(j−1), u(j), y(j−1)). 

(2) 

 
Fig. 2 Detailed structure of the data-driven model Gdd [19] 

The detailed structure of Gdd is shown in Fig. 2. Its 
adoption of linear regression keeps Gh linear. The linear 
regression model aims to estimate the physics-based model 
prediction error epb ≜ y − ŷpb. Accordingly, in batch j, the 
prediction of Gh is recursively obtained by applying 

ŷ
h
(k) = ŷ

pb
(k) + êpb(k) = ŷ

pb
(k) + ŵ

(j)T
φ(k), (3) 

where the time step k is defined within the j-th batch as in 
Eq. (1), ŵ(j) is the weight vector for the linear operator at the 
corresponding j-th batch, and φ(k) is the feature vector for time 
step k, which contains the elements in ŷpb

(j−1), ŷpb
(j) and epb

(j−1) 
(note that epb

(j−1) includes ŷpb
(j−1) and y(j−1) due to epb ≜ y − ŷpb). 

Vector φ(k) is formulated as 

 φ(k) = [1, ŷ
pb

(k − q + 1), …, ŷ
pb

(k), 

epb(k − p),…,epb(k − 1)]T, 
(4) 

where q and p are design parameters that determine the number 
of time steps of ŷpb and epb included in φ. The selection of q 
and p depends on the dynamics of the system and the length of 
the prediction horizon. Note that epb requires measured data 
obtained online in batches; therefore, epb(k) is not available for 
k ≥ jNp. Accordingly, epb(k) in Eq. (4) is replaced by an 
estimated physics-based predicted error êpb(k), as in Eq. (3), 
when  k ≥ jNp. The training of ŵ(j) is performed recursively by 
solving a regularized least squares optimization problem. It is 
designed to minimize the difference between the measured 
epb(k) and the predicted êpb(k) for all time steps before the 
current prediction batch using the following loss function 

ŵ
(j)

= argmin
w

∑ (epb(k) −  wTφ(k))
2jNp−1

k=0
+λ‖w‖2

2, (5) 

where λ > 0 is the regularization factor that prevents 
overfitting. Note that Eq. (5) is solved using the analytical 
solution of ridge regression for k = 0 and is updated using 
recursive least squares (RLS) for k > 0. 

III. HYBRID FILTERED BASIS FUNCTIONS (FBF) APPROACH 

This section briefly discusses the standard FBF approach 
[8], [9], followed by a detailed discussion of the proposed 
hybrid FBF approach. 

A. Overview of the FBF Approach  

Consider a linear system HL aiming to track the desired 
reference trajectory yd. In the filtered basis function (FBF) 
controller, the input u is expressed as a linear combination of 
a set of basis functions ψi (i = 0, 1, …, n), i.e., 

  u = ∑ γ
i
ψ

i
n
i=0 = 𝚿𝜸, (6) 

where γi is the coefficient of the linear combination, Ψ = [ψ0, 
ψ1, …, ψn] and γ = [γ0, γ1, …, γn]T. Due to the property of 
linearity, the output y is also a linear combination of the basis 
functions filtered through Gpb, i.e., 

Physics-based model

System

H = HL + HNL

Current input u(j)

Data-driven model

Past input u(j−1)

Current output y(j)

Past output y(j−1)

Physics-based 

model predictions

Gpb Gdd

Hybrid 

model Gh

ŷpb
(j)

Hybrid model 

prediction  ŷh
(j)

ŷpb
(j−1)

Current input u(j)

Past input u(j−1)

Linear 

Operator

Data-driven model Gdd

epb
(j−1)  ̂pb

(j)−

ŷpb
(j)

ŷpb
(j−1)

y(j−1)

ŷh
(j)
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  ŷ = ∑ γ
i
ψ̃

i
n
i=0  = Ψ̃γ, (7) 

where ψ̃
i
 = Gpbψi are the filtered basis functions and Ψ̃ = [ψ̃0, 

ψ̃1, …, ψ̃n]  is the filtered basis function matrix. The FBF 
method minimizes the tracking error e, which is defined as 

min
γ

‖ ‖2
2  ≜ min

γ
‖y

d
− ŷ‖

2

2
= min

γ
‖y

d
− Ψ̃γ‖

2

2
, (8) 

where the optimal γ is obtained by the pseudoinverse of Ψ̃  

γ = Ψ̃
†
y

d
 = (Ψ̃

T
Ψ̃)

−1

Ψ̃
T
y

d
, (9) 

and thereby the input to the system is u = Ψγ. 

A limited-preview (or receding horizon) version of the 
FBF method using B-spline, called limited-preview filtered B-
spline (LPFBS), was proposed in [9]. It partitions the 
trajectories into overlapping windows and then minimizes the 
tracking error window-by-window. The overlapping window, 
denoted by the superscript [j], has length Nw > Np, starting at 
the same time step as the non-overlapping batches described 
in Eq. (1), i.e.,  

y[j]=[y(jNp), y(jNp+1), …, y(jNp+Nw − 1)]
T
.  (10) 

Note that the round bracket (j) in the superscript in Eq. (1) 
represents the non-overlapping batches for prediction, while 
the square bracket [j] in Eq. (10) represents the overlapping 
window for control. Fig. 3 shows the differences between the 
batches and the windows. 

 
Fig. 3 The pictorial view of the definition of batches and windows 

To implement LPFBS, ŷ  is decomposed into past, current, and 
future sections with respect to the interested window j, i.e., 

ŷ
P

[j] = [y(0), y(1), …, y(jNp − 1)]
T
, 

ŷ
C

[j] = [y(jNp), y(jNp+1), …, y(jNp+Nw − 1)]
T
= ŷ

[j]
, 

ŷ
F

[j] = [y(jNp+Nw), y(jNp+Nw+1), … ]
T
, 

(11) 

Accordingly, Eq. (7) is rewritten as 

[

ŷ
P

[j]

ŷ
C

[j]

ŷ
F

[j]

] = [

Ψ̃P

[j]
0 0

Ψ̃PC

[j]
Ψ̃C

[j]
0

Ψ̃PF

[j]
Ψ̃CF

[j]
Ψ̃F

[j]

]

[
 
 
 γP

[j]

γ
C

[j]

γ
F

[j]
]
 
 
 

. (12) 

where the subscripts P, C, F in Ψ̃ respectively represent the 

past, current, and future input-output effects, while PC in Ψ̃ 
means the effects of the past inputs on the current outputs; PF 
and CF are similarly defined. Also, since it is assumed that the 

system is causal, Ψ̃ in Eq. (12) is a lower triangular matrix.  

Unlike the full-preview version proposed in [8], the 
LPFBS minimizes the tracking error in every local window j, 
i.e.,  e[j] = yd

[j] − ŷ[j] is to be minimized, where yd
[j] represents 

the desired trajectory in the j-th window and ŷ[j] is as defined 
in Eqs. (11) and (12). Thus, the objective is formulated as 

min
γ

C

[j]
‖ [j]‖

2

2
≜ min

γ
C

[j]
‖y

d

[j]
− ŷ

[j]‖
2

2
 

= min
γ

C

[j]
‖y

d

[j]
− (Ψ̃PC

[j]
 γ

P

[j]
 + Ψ̃C

[j]
 γ

C

[j]
)‖

2

2

, 
(13) 

where γC
[j] are the coefficients for the current (j-th) window, 

γP
[j] represents all coefficients calculated before γC

[j], while 

Ψ̃PC
[j] and Ψ̃C

[j] are the corresponding operators, as defined in 
Eq. (12). Since γC

[j] is the only term in Eq. (13) that is 
unknown, it is computed by 

γ
C

[j]
 = Ψ̃C

[j]†

(y
d

[j]
− Ψ̃PC

[j]
γ

P

[j]
) , (14) 

And then the optimal control inputs for j-th window, u[j], are 
given by 

u[j] = ΨPC

[j]
 γ

P

[j]
 + ΨC

[j]
 γ

C

[j]
.  (15) 

For continuity, only the first Np inputs from the total Nw are 
updated and fed into the system. Therefore, the input vector 
for the current batch, u(j), is given by 

u(j) = [INp
0] u[j], (16) 

where INp represents the Np × Np identity matrix, and 0 is a zero 
matrix of appropriate dimension.  

B. Implementation of Hybrid FBF Approach using Linear 

Hybrid Model 

As mentioned in Sections I and II, the tracking 
performance of the FBF controllers may deteriorate when the 
unmodeled HNL in the system is significant. Therefore, an FBF 
with the correction of measurement data is proposed. More 
specifically, the proposed FBF approach aims to enhance the 
LPFBS framework using the linear hybrid model. Since the 
proposed approach combines both physics-based and data-
driven models, it is called hybrid FBF.  

The general idea of the proposed hybrid FBF is to obtain a 
more accurate but still linear input-output relationship using 
the linear hybrid model Gh. In other words, in addition to the 
linear model, the linear regression model is also used within 
the FBF framework. As in the LPFBS, the desired trajectory is 
partitioned into several overlapping windows of length Nw for 
optimization, but only the first Np time steps are packaged in 
one batch and sent to the system for control. In contrast to the 
prediction aspect of the linear hybrid model that is performed 
recursively to obtain the predicted outputs, for control, the 
linear hybrid model requires a window-to-window mapping. 
That is, Eq. (2) and Eq. (3) are combined as 

ŷ
h

[j]
 = ŷ

pb

[j]
 +  ̂pb

[j]
 = Gdd ( ŷ

pb

[j −1]
, ŷ

pb

[j]
,  y[j −1]) =Ldd

[j]

[
 
 
 
 

1

ŷ
pb

[j −1]

ŷ
pb

[j]

 pb

[j −1]
]
 
 
 
 

, (17) 

where Ldd
[j] is the matrix representation of Gdd for the j-th 

window. The rows of Ldd
[j] are constructed based on ŵ(j)T in 

Eq. (3), and the details of constructing Ldd
[j] are presented in 

the Appendix. 

Nw

Np

time step k

batch / 

window 

index j

Non-overlapping batch

Overlapping window

……
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Besides, ŷpb
[j−1] and epb

[j−1] are defined as 

ŷ
pb

[j−1] = 

[ŷ
pb

(jNp − q+1), ŷ
pb

(jNp − q+2), …, ŷ
pb

(jNp − 1)]
T

  
(18) 

and 

 pb

[j−1]
=[epb(jNp − p),epb(jNp − p+1),…, epb(jNp − 1)]

T
 (19)    

respectively; ŷpb
[j] is defined similar to ŷC

[j] in Eq. (11) as 

ŷ
pb

[j]  = [ŷ
pb

(jNp), ŷ
pb

(jNp +1), …, ŷ
pb

(jNp + Nw − 1)]
T

.   (20) 

Furthermore, Eq. (17) is decomposed into an alterable part 
(ŷpb

[j]) and an unalterable part (φu
[j]) as 

ŷ
h

[j]
 = Ldd,a

[j]
 ŷ

pb

[j]
 + Ldd,u

[j]
φ

u
[j], (21) 

where Ldd,a
[j] and Ldd,u

[j] respectively represent the linear 
operators for alterable terms and the unalterable terms, 
extracted from the columns of Ldd

[j]. Vector φu
[j] comprises all 

the unalterable terms for the j-th batch, i.e., 

 φ
u
[j] = [1  ŷ

pb

[j −1]
 pb

[j −1]
]

T

. (22) 

Vector ŷpb
[j] in Eq. (21) is rewritten, according to Eq. (12), as 

ŷ
pb

[j] = Ψ̃PC

[j]
 γ

P

[j]
 + Ψ̃C

[j]
 γ

C

[j]
, (23) 

where, as in Eq. (12),  γC
[j] represents the coefficients that 

affect ŷpb starting from j-th window, γP
[j] represents the 

coefficients prior to γC
[j], while Ψ̃PC

[j] and Ψ̃C
[j] represent the 

linear effects of γP
[j] and γC

[j] on ŷpb
[j], respectively. Combining 

Eq. (21) and Eq. (23), the final prediction ŷh is given by 

ŷ
h

[j]
 = Ldd,a

[j]
Ψ̃PC

[j]
 γ

P

[j]
 + Ldd,a

[j]
Ψ̃C

[j]
 γ

C

[j]
 + Ldd,u

[j]
 φ

u
[j]. (24) 

To minimize the tracking error for the j-th window, γC
[j] is the 

only optimization variable and is used to minimize the 
objective function given by  

min
γ

C

[j]
‖ [j]‖

2

2
= min

γ
C

[j]
‖y

d

[j]
− ŷ

h

[j]‖
2

2
. (25) 

The optimal control points γC
[j] are calculated as 

γ
C

[j]
 = (Ldd,a

[j]
Ψ̃C

[j]
)

†

(y
d

[j]
− Ldd,a

[j]
Ψ̃PC

[j]
 γ

P

[j]
− Ldd,u

[j]
 φ

u
[j]) , (26) 

and then the inputs for the j-th batch, u(j), are calculated by the 
exactly same method as the LPFBS, i.e. by Eqs. (15) and (16).  

With u(j) fed into the system and the corresponding output 
y(j) measured, the linear hybrid model is also updated by 
training ŵ recursively, i.e., 

ŵ
(j)

=argmin
w

∑ (epb(k) − wTφ(k))
2jNp−1

k=0
+λ‖w‖2

2, (27) 

where epb is obtained by 

 pb

(j)
 = y(j) − ŷ

pb

(j)
 = y(j) − (Ψ̃PC

(j)
 γ

P

(j)
 + Ψ̃C

(j)
γ

C

(j)
) . (28) 

The hybrid FBF approach is summarized in Fig. 4.  

IV. VALIDATION BY SIMULATION 

Consider a commercial vibration-prone 3D printer as in [9]. 
Due to the stepper motor dynamics and the flexible structure 
of the 3D printer, the print head can suffer from significant 
vibration, resulting in vibration marks on the printed parts [9]. 
Suppose the x- and y-axis of the 3D printer are fully decoupled; 
the vibrational dynamics in either axis can be modeled by a 
spring-mass-damper system shown in Fig. 5. The system 
experiences a disturbance force HNL assumed to be created by 
unmodeled nonlinear guideway friction and stiffness from the 
printer’s cabling system. 

 
Fig. 5 Spring-mass-damper model representing the dynamics of a motion 

axis of a 3D printer with unmodeled nonlinearity from friction and cabling 

The motion axis’ dynamics can be written as 

 mÿ + cẏ + ky + HNL(y, ẏ) = cu̇ + ku, (29) 

Let us assume that m = 1 kg, c = 15.7 kg/s, and k = 24674 N/m 
such that, without considering nonlinearity, the natural 
frequency is 25 Hz and the damping ratio is 5%. Further, 
assume that the nonlinear disturbance force is 

HNL(y,ẏ) = 0.1 sgn(ẏ) ẏ2 + sgn(y) y2. (30) 

Accordingly, the combined nonlinear system dynamics is 
given by 

 mÿ + (c + 0.1|ẏ|)ẏ + (k + |y|)y = cu̇ + ku, (31) 

u

m
k

c
HNL

y

Calculate optimal control 

points γC
[j] using Eq. (26)

System

H

Convert γC
[j] to u[j]

using Eq. (15)

memory

Train Gdd to satisfy Eq. (27)

(Updating ŵ(j) using RLS) 

and convert to Ldd
[j]

Gpb

LPFBS

Hybrid FBF

Extract first Np of 

u[j] using Eq. (16)

u[j]γC
[j]

u(j)yd
[j] y(j)

Ldd
[j]

γP
[j] γP

[j]

ŷpb
(j)

Fig. 4 Architecture of the proposed Hybrid FBF 
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The physics-based model Gpb does not consider the 
unmodeled nonlinearity HNL. It is obtained from the transfer 
function Gpb(s): 

Gpb(s)=
 cs + k

ms2 + cs + k
  . (32) 

Gpb(s) is converted to lifted form (i.e., a discrete finite impulse 
response matrix), yielding Gpb. 

To compare the performance of the standard FBF and the 
hybrid FBF approaches, simulations are conducted by forcing 
the system in Eq. (31) to track the desired trajectories yd shown 
in Fig. 6(a) and Fig. 7(a). With sampling time Ts = 1 ms, yd in 
Fig. 6(a) is a discrete staircase trajectory which travels from 0 
mm to 30 mm and then back to 0 mm with an increment of 10 
mm, while yd in Fig. 7(a) is a variable-frequency oscillatory 
trajectory which is extracted from one axis of a circular spiral 
trajectory formulated as  

r = 5 + (
5

2π
)θ,        0 ≤ θ ≤ 8π.    (33) 

Both trajectories are subject to kinematic limits given by 

ẏ
d,lim

 = 80 mm/s,   ÿ
d,lim

 = 8 m/s2,   y⃛
d,lim

 = 1000 m/s3. (34) 

For both the standard FBF and the hybrid FBF, the batch 
length Np = 100, the window length Nw = 200, and the basis 
functions are fifth-order B-spline basis functions with knot 
vector spacing equal to 10 (equivalent to 0.01s). For the linear 
hybrid model parameters, q = 4 such that it implicitly includes 
up to the jerk information, while p = 50, which is half of Np. 

 
Fig. 6 (a) Desired trajectory (staircase); (b) Comparison of the tracking 

errors using the standard FBF and the hybrid FBF 

 
Fig. 7 (a) Desired trajectory (oscillatory); (b) Comparison of the tracking 

errors using the standard FBF and the hybrid FBF 

Fig. 6(b) and Fig. 7(b) compare the tracking errors for both 
FBF approaches. It is shown that the tracking performance of 
the hybrid FBF approach is enhanced compared to the standard 
one when the system includes the nonlinearity HNL(y, ẏ). In 
both simulations, the first five batches are employed for 
initializing the training of the hybrid FBF approach (i.e., 
warm-up). During the warm-up, Gdd is not used for control, so 
the hybrid FBF yields an identical response as the standard 
FBF. Beyond these initial training batches, the tracking errors 
of the hybrid FBF are significantly lower than the standard 
FBF in most portions. When abrupt changes or new 
characteristics occur in yd, the performance of the hybrid FBF 
deteriorates momentarily since Gdd has not been trained on the 
new operating conditions. However, it can quickly recover its 
performance upon training with new data. To sum up, the 
overall RMS of the tracking errors for the staircase and the 
oscillatory trajectories are respectively 20.3 μm and 16.8 μm 
for standard FBF, and are 7.0 μm and 6.1 μm for the hybrid 
FBF, i.e., 65.4 % and 63.8% reductions in RMS tracking error. 

V. CONCLUSION AND FUTURE WORK 

This paper proposes a hybrid filtered basis functions (FBF) 
approach that enables the application of the FBF approach to 
feedforward tracking control of systems with unmodeled 
nonlinearity. Compared to the standard FBF, which only uses 
a physics-based model for control, the proposed hybrid FBF 
utilizes a linear hybrid model combining a physics-based 
model and a linear data-driven model. The data-driven model 
uses measured data to approximate unmodeled nonlinearity in 
a linear fashion.  

In simulation case studies, the proposed hybrid FBF 
showed up to 65.4% improvements in tracking accuracy 
compared to the standard FBF because of its ability to 
approximate unmodeled nonlinearity from data. However, the 
performance of the hybrid FBF approach can degrade if the 
training of the data-driven model is insufficient. Thus, a warm-
up period was required to allow for sufficient training. It is 
useful to determine the uncertainty of the hybrid model so as 
to optimally select the number of initialization batches. Also, 
to prevent transient loss of performance when operating 
conditions change abruptly, multiple data-driven models can 
be created to respectively model different nonlinear behaviors 
under various scenarios. Stability analysis and experimental 
validation of the hybrid FBF are also needed. These are 
subjects for future work. 
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APPENDIX 

This appendix describes the conversion of the linear hybrid 
model from the recursive prediction, as expressed in Eq. (3)  
and (4), to the window-to-window mapping, as in Eq. (17). 

Suppose the feature vector in Eq. (4) is partitioned into 
three different sections: the bias term, ŷpb , and epb. That is,  

Initialization (warm-up) 

of training

Window 

length Nw

Batch 

length Np

Initialization (warm-up) 

of training

Window 

length Nw

Batch 

length Np
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 φ(k) = [1  ŷ
pb

(k)  pb(k)]
T
, (35) 

where ŷpb(k) includes ŷpb(k−q+1), …, ŷpb(k) and epb(k) includes 
epb(k−p), …, epb(k−1). Then, the corresponding weight ŵ in 
the êpb part in Eq. (3) can also be decomposed into the 
corresponding vectors as 

ŵ = [ŵbias,  ŵypb,  ŵepb]
T
 . (36) 

In order to construct a window-to-window mapping where the 
output contains all time steps in one window, say ŷh(k) to 
ŷh(k+Nw−1), the combined feature vector is given by 

[1, ŷ
pb

(k − q+1), …, ŷ
pb

(k − 1), 

ŷ
pb

(k),..., ŷ
pb

(k+Nw − 1), 

epb(k − p),…,epb(k − 1), 

êpb(k),…êpb(k+Nw − 2)]T, 

(37) 

and the linear operator Kdd to perform the conversion, which 
is an (Nw)×(2Nw+p+q−1) matrix, is constructed as follows. For 
each row i, i.e., for i = 1 to Nw,   

[Kdd]i1 =ŵbias 

[Kdd]i(i+1:i+q) = ŵypb 

[Kdd]i(i+Nw+q:i+Nw+q+p−1) = ŵepb, 

(38) 

where [A]ij denotes the element in the i-th row and the j-th 
column of the matrix A, and [A]i(j:n) denotes the vector 
composed of the j-th to n-th elements in the i-th row of A. 

However, since all êpb terms in Eq. (37) are dependent on the 
other elements, so the independent elements only contain 

[1, ŷ
pb

(k − q+1), …, ŷ
pb

(k − 1), 

ŷ
pb

(k),..., ŷ
pb

(k+Nw − 1), 

epb(k − p),…,epb(k − 1)]T, 

(39) 

which corresponds to the first Nw+p+q elements in Eq. (37) 
Therefore, the linear operator for Eq. (39), denoted as Ldd, is 
rearranged as follows. Firstly, assign for each row i of Ldd,  

[Ldd]i:= [Kdd]i(1:Nw+q+p), (40) 

where [A]i: denotes the i-th row of A. Then, for each additional 
element between Eqs. (37) and (39), i.e., for j = 1 to Nw−1, 
recursively perform 

Ldd  = Ldd  + [Kdd]:(j+Nw+q+p)⋅[Ldd ]j: , (41) 

where [A]:j denotes the j-th column of A. Lastly, since in 
Eq. (3), additional term ŷpb is added, the corresponding 
elements of Ldd are further added by 1, i.e., for k = 1 to Nw 

[Ldd ]k(k+q) = [Ldd ]k(k+q) + 1.  (42) 

The Ldd obtained in Eq. (42), and the feature vector in Eq. (39) 
are corresponding to the terms in Eq. (17). 
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