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ABSTRACT 
This paper proposes an approach for minimizing tracking 

errors in systems with non-minimum phase (NMP) zeros by 
using filtered basis functions. The output of the tracking 
controller is represented as a linear combination of basis 
functions having unknown coefficients. The basis functions are 
forward filtered using the dynamics of the NMP system and 
their coefficients selected to minimize the errors in tracking a 
given trajectory. The control designer is free to choose any 
suitable set of basis functions but, in this paper, a set of basis 
functions derived from the widely-used non uniform rational B-
spline (NURBS) curve is employed. Analyses and illustrative 
examples are presented to demonstrate the effectiveness of the 
proposed approach in comparison to popular approximate 
model inversion methods like zero phase error tracking control.  

1. INTRODUCTION 

The goal of tracking control is to force the output of a 
system to follow a desired trajectory as closely as possible. In 
linear time invariant (LTI) systems, perfect tracking control 
(PTC) can be achieved, in theory, by model inversion based 
control techniques [1]. PTC results in zero gain and phase 
errors between the desired and actual trajectories, if the model 
of the system is accurate and has a stable inverse. However, 
when applied to systems with non-minimum phase (NMP) 
zeros, whose inversions yield unstable poles, PTC gives rise to 
highly oscillatory or unstable trajectories which are 
unacceptable [1]. 

NMP zeros are prevalent in practice. For example, they 
occur in digital systems with fast sampling rates [2], as well as 
in systems with non-collocated placement of sensors and 
actuators [3]. Consequently, a lot of research effort has been 

poured into developing methods for accurately tracking NMP 
systems. One school of thought is to perform direct inversion 
with bounded reference trajectories [4–8] by modifying initial 
conditions [7], employing noncausal plant inputs [4–6] or  
computing output trajectories that cancel the effect of unstable 
zeros [8].  

An alternative approach is to use approximate model 
inversion by ignoring the NMP zeros (aka NPZ-ignore) [9] or 
by employing zero phase error tracking control (ZPETC) [1,10–
13] or zero magnitude error tracking control (ZMETC) [14,15]. 
Approximate model inversion techniques are more popular than 
their direct inversion counterparts because they are easier to 
understand and implement, and are applicable to a wider range 
of problems [9]. The NPZ-ignore technique disregards the 
NMP zeros and makes adjustments such that the DC gain of the 
controlled system is unity; but it results in magnitude and phase 
errors between the desired and actual trajectories that may be 
very detrimental to tracking performance [9]. ZPETC inverts 
the system to produce no errors in phase across all frequencies; 
however, it gives rise to errors in the gain of the controlled 
system which may adversely affect tracking performance. 
Conversely, ZMETC achieves approximate model inversion by 
making the net gain of the controlled system to be unity across 
all frequencies, at the expense of phase errors which amount to 
time delays and tracking errors.  

This paper proposes a new approach for realizing tracking 
control for NMP systems by employing filtered basis functions 
(FBF). The desired trajectory to be tracked is assumed to be 
entirely known and the output of the tracking controller is 
represented as a linear combination of basis functions having 
unknown coefficients. The basis functions are forward filtered 
using the modeled dynamics of the NMP system and their 
coefficients selected to minimize the errors in tracking the 
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desired trajectory. The choice of a suitable set of basis functions 
is up to the control designer but a set of basis functions derived 
from the widely-used non-uniform rational B-spline (NURBS) 
curve is employed in this paper for elucidating the proposed 
technique. Analyses and illustrative simulations are used to 
demonstrate the superior tracking performance of the proposed 
FBF approach in comparison with NPZ-ignore, ZPETC and 
ZMETC. The rest of the paper is organized as follows. Section 
2 gives a brief overview of approximate model inversion 
techniques for tracking control of NMP systems and contrasts 
them with the proposed FBF technique. Section 3 then 
introduces NURBS curves and demonstrates how they can be 
used to realize the proposed technique. Simulation-based 
examples are presented and discussed in Section 4, followed by 
remarks on the versatility and practicality of the FBF technique, 
ending with conclusions and future work. 

2. TRACKING CONTROL FOR NMP SYSTEMS 

Consider the discrete-time LTI SISO system G(z−1) shown 
in Fig. 1, augmented with a tracking controller C(z−1). G could 
represent the transfer function of a plant or a closed-loop 
controlled system [16]. Given a desired trajectory, xd(k), where  
0 ≤ k ≤ E, k ∈ , the objective of tracking control is to design C 
such that its output c(k), after passing through G, results in an 
actual trajectory x(k) that is sufficiently close to xd(k). Ideally, C 
= G−1 should be selected such that the overall dynamics L = 
CG, from xd(k) to x(k), is unity, representing perfect tracking 
performance. 

 

 
FIGURE 1: TRACKING CONTROL 

 
However, if G contains NMP and/or poorly damped zeros 

(both of which are hereinafter referred to as un-cancellable 
zeros), its inverse is either unstable or gives rise to an overly 
oscillatory response, hence unacceptable. Under this condition, 
G can be written as 

 
1 1

1
1

( ) ( )
( )

( )

d
s uz B z B z

G z
A z

  


 , (1) 

 
where z−d represents the d-step time delay of the system, and A, 
Bs and Bu are polynomials in z−1 with constant coefficients. Bs 
contains the stable and sufficiently damped zeros of G while Bu 
contains its un-cancellable zeros which prevent C = G−1 from 
being realized. 

2.1. TRACKING CONTROL USING APPROXIMATE 
MODEL INVERSION  

A popular way of realizing C for NMP systems is through 
approximate model inversion. Approximate inversion 

techniques work by setting C = 1Ĝ , where 1Ĝ represents a 

stable approximation of G−1 that is selected such that L is 
sufficiently close to unity (at least over a frequency range of 

interest). Table 1 provides a synopsis of 1Ĝ and L for the three 
main approximate model inversion techniques, namely, NPZ-
ignore, ZPETC and ZMETC. Notice that NPZ-ignore realizes 

1Ĝ by discounting Bu and normalizing the DC gain of L to 
unity, at the expense of gain and phase errors at higher 
frequencies. ZPETC invokes the fact that  

 
1( ( ) ( )) 0u uB z B z   (2) 

 
to achieve zero phase in L, but |L| deviates from unity at 
frequencies beyond its DC value. On the other hand, ZMETC 
uses the fact that 
 

1( ) ( )u uB z B z   (3) 

 
to create a stable approximate inverse of G that maintains unit 
magnitude across all frequencies in L, at the expense of non-
zero phase behavior. Butterworth et al. [9] showed that the 
characteristics and severity of the magnitude and/or phase 
errors in NPZ-ignore, ZPETC and ZMETC are highly 
dependent on the location of the zeros of Bu. The implication 
being that the performance of any one of the methods relative 
to the others may vary quite significantly from system to 
system. 
 

TABLE 1: SYNOPSIS OF APPROXIMATE INVERSION 
METHODS 

Method 1 1 1ˆ( ) ( )C z G z    1( )L z  

NPZ-
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1

1
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( )
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u

B z
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2.2. TRACKING CONTROL USING FILTERED BASIS 
FUNCTIONS (FBF) 

The approximate model inversion techniques discussed in 
the previous section generate the exact representation of c(k) 
using an approximate representation of G (or, more specifically, 
of G−1). Here, we introduce a different approach for tracking 
control that generates an approximate representation of c(k) 
using the exact representation of G. The method is built on two 
assumptions: 

i) The desired trajectory, xd(k), is known a priori 
ii) The output of the tracking controller, c(k), is 

parameterized as  
 

L

xd(k)
c(k)

x(k)1( )C z 1( )G z
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0

( ) ( )
n

i i
i

c k p u k


  , (4) 

 
where {ui(k)} is a set of n+1 linearly independent basis 
functions and {pi}	 is a set of coefficients, pi ∈ . Note that both 
assumptions stated above are satisfied by a wide range of 
tracking applications like those in manufacturing, robotics and 
aerospace, where desired trajectories are typically known ahead 
of time and are often parameterized using a finite set of basis 
curves [17,18]. Following from Eq.(4), x(k) can be written as 
 

0

( ) ( ) ( )
n

i i
i

x k Gc k p u k


    , (5) 

 
where 
 

( ) ( )i iu k Gu k  (6) 
 
represents the basis functions, forward filtered by G. Let us 
define W and W , the input and output vector spaces, 
respectively, as 
 

span{ ( )}iW u k  (7) 

span{ ( )}iW u k  . (8) 

 
The vector spaces W and W are subspaces of E+1 because any 
trajectory defined over E+1 discrete points belongs to E+1. It is 
important to note that {ui(k)} should be chosen such that 
{ ( )}iu k is linearly independent (meaning that { ( )}iu k should be 

a basis for W ). Section 2.3 discusses conditions for the linear 
independence of { ( )}iu k .  

For perfect tracking, {pi} should satisfy the equation 
 



0 1 0

0 1 1

0 1

(0) (0) (0) (0)

(1) (1) (1) (1)

( ) ( ) ( ) ( )

d

n d

n d

n n d

u u u p x

u u u p x

u E u E u E p x E

     
     
     
     
     
     

p xU

  
  
     

   

. 
(9) 

 
An exact solution to Eq.(9) exists, if and only if the rank of U  

is equal to the rank of [ | ]dU  x , i.e., d Wx  . However, 

generally n < E and d Wx  ,	 therefore	 the solution to Eq.(9) is 

approximated by least squares according to the equation [19] 
 

  1T T
d


p U U U x   . (10) 

 
Consequently, the relationship between the vectors x = [x(0), 
x(1),…x(E)]T and dx  can be expressed as 

  1T T
d


x = U U U U x

H

   


. 
(11) 

 
The matrix H is a projection matrix from the desired 

trajectory to the actual trajectory [20]. It is a square matrix of 
order E+1, symmetric and idempotent (i.e., H2 = H), with rank 
and trace both equal to n+1, i.e., the number of basis functions. 
In a perfect tracking scenario, H is the identity matrix such that 
x = xd. However, because of the least squares solution, each 
row k of H represents a FIR filter which acts on xd to generate 
the corresponding x(k). Note that H is not a Toeplitz matrix 
(i.e., it is not a diagonal-constant matrix); therefore, in general, 
H behaves like a time varying FIR filter which acts on xd to 
generate x.   

Notice that H is functionally equivalent to the transfer 
function L described in Section 2.1; i.e, it maps xd to x. From 
Table 1, one observes that for NPZ-ignore and ZPETC 
methods, L is a time invariant FIR filter, whereas for ZMETC, 
L is a time invariant IIR filter. In each case, the filter 
coefficients depend solely on Bu(z−1); however, according to 
Eq.(11), the elements of H depend on the system dynamics G 
as well as the selected basis functions. 

2.3. CONDITIONS FOR LINEAR INDEPENDENCE OF 
FILTERED BASIS FUNCTIONS 

A unique solution to Eqs. (10) and (11) exists if   1T 
U U   

exists; i.e., if TU U   is invertible. The matrix TU U   is invertible 
provided U  has linearly independent columns meaning that 
rank of U  is n+1 [21].  

The linear dependence of { ( )}iu k  implies the existence of 

non-zero {γi} such that 
 

0

( ) ( ) 0
n

i i
i

x k u k


    (12) 

0

( ) ( ) 0
n

i i
i

c k u k


  , (13) 

 
given that {ui(k)} are linearly independent by definition 
(because they are basis functions). Hence { ( )}iu k  are linearly 

dependent if there exists a non-zero c(k) such that  
 

( ) ( ) 0x k Gc k  . (14) 
 
The implication of Eq.(14) is that c(k) belongs to the null space 
of G.  

The FBF approach is not limited to the system definition 
given by Eq.(1). Hence a more generalized (state-space) 
representation of the system G which accounts for non-zero 
initial conditions is used for the analysis. It is given by 
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( 1) ( ) ( ),

( ) ( ) ( ),
d d

d d

k k c k

x k k D c k

  
 

f A f B

C f
 (15) 

 
where f(k) is the state vector while Ad, Bd, Cd and Dd are the 
state, input, output and feedforward matrices, respectively. 
Note that the system transfer function can be recovered from 
Eq.(15) as  
 

1 1 1 1( ) ( ) ,d d d dG z z z D     C I A B  (16) 

 
where I is identity matrix. The system output x(k) is composed 
of a zero input response (ZIR) and zero state response (ZSR) 
[19], i.e., 
 

1
1

0
Zero Input Response (ZIR)

Zero State Response (ZSR)

( ) (0) ( ) ( ).
k

k k j
d d d d d d

j

x k c j D c k


 



  C A f C A B
    (17) 

 
Judging from Eq.   (17) one obvious (albeit trivial) solution 

to Eq.(14)  is f(0) = 0 and c(k) = 0, which contradicts Eq.(13). 
Non-trivial solutions can be obtained by solving the equations 
given by (0 ≤ k ≤ E) 

 

        
1

1

0

0 (0) ( ) ( ).
k

k k j
d d d d d d

j

c j D c k


 



  C A f C A B  (18) 

 

Let ( ) ( )c k c k   and (0) (0)f f


be the solution of Eq.(18) 

and f0(0), f1(0), ..., fn(0) be the initial states used to forward 
filter u0(k), u1(k), ..., un(k), respectively, using Eq.(15). Then for 
linear dependence 
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where 
 

 
 
 

0 1

0 1

0 1

0 1

T

0 1

T

(0) (0) (0)

(1) (1) (1)
,

( ) ( ) ( )

(0) (0) (0) ,

,

(0) (1) ( ) .

n

n

n

n

n

u u u

u u u

u E u E u E

c c c E

  

 
 
 
 
 
 







U

F f f f

γ

c




   





   

 (20) 

 
Therefore, the filtered basis functions { ( )}iu k are linearly 

dependent if and only if the basis functions {ui(k)} and filter 
initial states {fi(0)} satisfy the condition 
 

rank rank
(0)

      
      

      

U U c

F F f


 .  (21) 

 

Note that ( )c k
 and (0)f


 are properties of the system whereas 

U and F are defined by the user. Using a simple example, it is 
shown in Section 4 that the condition of Eq.(21) is very hard to 
satisfy in practice; therefore linear dependence of filtered basis 
functions is highly improbable. Nonetheless, should Eq.(21) be 
satisfied by a given U and F, either U or F can be easily 
modified to establish linear independence of the filtered basis 
functions.    

3. NURBS-BASED IMPLEMENTATION  

3.1. NON UNIFORM RATIONAL B-SPLINE  (NURBS) 

 The non-uniform rational B-spline (or NURBS for short) 
is widely used for parameterizing curves in applications which 
involve trajectory tracking like CNC manufacturing and 
robotics [17,18,22,23]. It is popular because of its intuitiveness 
and flexibility combined with its excellent mathematical and 
algorithmic properties [17,18]. Therefore, it is adopted in this 
paper for demonstrating the proposed technique.  

A NURBS curve of degree m, defined by n+1 control 
points (or coefficients) p0, p1,…, pn, with corresponding 
weights w0, w1,…, wn and a knot vector [g0 g1 … gm+n+1]T is 
expressed as [17] 

 

,
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,
0

( )
( )
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n

i m i i
i

n

i m i
i

N w p
c

N w
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where ξ ∈ [0,1] is the spline parameter and Ni,m(ξ) is the basis 
function of degree m given by 
 

1
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    (23) 

 
The basis functions are piecewise polynomial functions 
forming a basis for the vector space of all piecewise polynomial 
functions of the desired degree and continuity (for a given knot 
vector) [17]. Selecting a uniform knot vector of the form [17]  
 

0 0 1

1
1

1 2 1

j

j m

j m
g m j n

n m
n j m n

  
      

    

, (24) 

 
Eq.(22) can be re-written as  
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where {Ri,m(ξ)} are rational basis functions given by 
 

,
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(26) 

 
Notice the equivalence between Eqs. (4) and (25). If ξ ϵ [0,1] is 
discretized into E+1 uniformly spaced points such that ξ = [ξ0 
ξ1 … ξE] represents normalized time, ui(k) = Ri,m(ξk) can be 
defined and used to implement the proposed technique as 
described in Section 2.2. 

3.2. HANDLING OF NON-ZERO INITIAL CONDITIONS 

In tracking control, the trajectory to be tracked could have 
non-zero initial conditions associated with the trajectory itself, 
as well as with its higher-order derivatives. The NURBS 
framework described in the preceding section can be used to 
enforce such constraints by noting that cꞌ(ξ), the derivative of 
Eq.(25) w.r.t. ξ , can be written as [24] 

 

,
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Evaluating Eqs. (27) and (28) at ξ = ξ0 gives 
 

0 1
0 1 0

0

( )
( ) ( )

c w
c m p p

T w




   , (29) 

 
where ( )c  is derivative w.r.t. time and T is the time duration of 

the trajectory. Higher order derivatives of Eq.(25) can be 
obtained in a similar manner. Note that the value of the first 
derivative at ξ = ξ0 depends on the first two control points. The 
value of second derivative will depend on the first three control 
points and so on. Consequently, an initial condition on the rth 
derivative of a given trajectory constraints the first r+1 control 
points associated with the trajectory (where r < m). Hence, the 
initial conditions of xd(k) (which are the same as those of c(k)) 
can be expressed as 
 

Qp = z , (30) 
 

where z is a vector of initial conditions and Q is a matrix 
comprising the coefficients obtained from Eqs. (27)-(29), and 
similar equations derived for higher order derivatives. 
Accordingly, Eqs. (9) and (30) can be combined to obtain [25] 
 

T
d     

    
    

p xR Q

λ zQ 0


, (31) 

 
where	 λ	 is a vector of Lagrange multipliers and R  is the same 
as U defined in Eq.(9), with { ( )}iu k  replaced by , ( )i m kR  . The 

solution of Eq.(31) (in a manner similar to Eq.(10)) results in 
minimum tracking error while satisfying the conditions given 
by Eq.(30).  

3.3. ENHANCED TRACKING OF HIGHER ORDER 
DERIVATIVES 

In certain tracking applications, e.g., position tracking in 
robots and CNC machines, it may be of interest to also 
maintain close tracking of higher order derivatives of the 
desired trajectory, e.g., velocity and acceleration. The NURBS 
framework is very useful in this regard. For simplicity, we 
assume that the weights {wi} are equal to 1, meaning that

, ,( ) ( ) ( )i i m k i m ku k R N   . In this case, cꞌ(ξ) is a NURBS 

curve with unity weights defined by n control points, degree 
m−1 and knot vector [g1 g2… gm+n]T (obtained by dropping first 
and last knots from the knot vector of c(ξ)).  The control points 
of cꞌ(ξ), denoted as{qj}, are related to the control points of c(ξ) 
by [17] 

 

1

1 1

j j
j

j m j

p p
q m

g g


  





. (32) 

 

Defining  T0 1( ) ( ) ( )Ec c c  c    as the derivative of c 

w.r.t. time, we get 
 

1d

m

T
 c N DSp N p . (33) 

 
The matrix Nd is obtained by discretizing Ni,m-1(ξ), computed 
over knot vector [g1 g2… gm+n]T using ξ = [ξ0 ξ1 … ξE], while D 
and S are defined as  
 

  
( 1)
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1 1 2 2

1 1 0 0

0 1 1 0
,

0 0 1 1

diag .
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(34) 

 
Following the same procedure, the rth time derivative of c can 
be expressed in the form 
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Filtering N1, N2… Nr using G gives, 1N , 2N … rN  respectively, 

consequently, accurate tracking of xd and its first r derivatives 
can be achieved by solving the composite equation given by 
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, 
(36) 

 
where α1, α2, … αr  are user-defined weights attached to each 
derivative of xd to indicate its importance relative to position 
tracking. The solution of Eq.(36) can be obtained using least 
squares in a manner similar to Eq.(10). 

4. ILLUSTRATIVE EXAMPLES 

4.1. TRACKING COMPARISON 

This section compares the tracking performance of the 
proposed method with NPZ-ignore, ZPETC and ZMETC using 
the illustrative first order NMP system studied by Butterworth 
et al. [9]. It is given by the transfer function 

 
1

1
1

1 1
( ) ;   ,

11

az p
G z K K

apz






 
 


 (37) 

 
with p = 0.5 and a = ±1.1, sampled at a frequency of 10 kHz. 
When a = 1.1, the NMP zero is in the right half plane (RHP) of 
the z domain, and when a = −1.1 it is in the left half plane 
(LHP). Table 2 provides the state space parameters of G(z−1). 
Note that Ad, Bd and Cd are scalars because it is a first order 
system with only one state.  
 

TABLE 2: STATE SPACE REPRESENTATION OF G(z−1) 
 Ad Bd Cd Dd 

a =1.1 
(RHP) 

0.5 1 3 −5 

a = −1.1 
(LHP) 

0.5 1 0.38 0.24 

 
Figure 2 shows the x-y path of the desired trajectory to be 

tracked, consisting of motions along the x and y axes, sampled 
at 10 kHz with a total duration of 0.05 seconds (E = 500). 
Figure 3 shows the x and y axis position, velocity and 
acceleration profiles of the desired trajectory as functions of 
time. Notice that x and y positions have non-zero initial 
conditions. Each axis is treated as an independent SISO system 
having the NMP closed-loop transfer function given by Eq.(37). 
A NURBS curve of degree m = 4 and 201 control points (i.e., n 

= 200) is used to implement the proposed FBF approach for 
each axis.  
 

 
FIGURE 2: X-Y PATH OF DESIRED TRAJECTORY 

 

 
FIGURE 3: POSITION, VELOCITY AND ACCELERATION 

PROFILES OF DESIRED TRAJECTORY AS A FUNCTIONS 
OF TIME 

 

For the system defined by Eq.(37), ( )c k
 and (0)f


are 

obtained by solving Eq.(18) to get 
 

( ) (0),

(0) (0).

k

d d

c k a c

D c



 C f

 
   (38) 

 
Note ( )c k

 that is an exponential signal. To satisfy Eq.(21) 

NURBS basis functions must span this exponential signal 
which is highly unlikely for n < E and a finite set of piecewise 
polynomial functions like NURBS basis functions. 
Furthermore, the filter initial states fi(0) used to filter the basis 
functions should satisfy Eq.(38). In this work, the initial states 
for forward filtering u0(k), u1(k), ..., un(k) are selected such that 

(0) (0)i iu u  which ensures that the output trajectory can start 

from a non-zero initial condition. Hence based on Eq.(38), U 
and F, for both the RHP and LHP systems, give  
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      rank 201 and rank 202.
(0)

      
       

      

U U c

F F f


  (39) 

 
This implies that the filtered basis functions are linearly 
independent. Linear independence of the basis functions can 
also be verified based on the fact that U and U  are rank n+1 = 
201 matrices for the RHP as well as the LHP case.  

Figure 4 compares the x and y axis tracking errors of NPZ-
ignore, ZPETC, ZMETC and FBF as functions of time for the 
RHP zero system. The same comparison is made in Fig. 5 for 
the LHP zero system. Table 3 summarizes the x and y axis RMS 
tracking errors obtained from each plot.  Notice that all the 
methods track better when the system has a LHP zero compared 
to a RHP zero. However, in both cases, the FBF method 
outperforms the approximate model inversion techniques in 
terms of tracking performance by at least one order of 
magnitude. 

Beyond the time domain comparison of Figs. 4 and 5, it is 
of interest to compare the methods with regard to tracking 
bandwidth. Tracking performance depends on both magnitude 
and phase so we define the tracking bandwidth based on the 
frequency at which |L| deviates from ±3 dB and/or L deviates 
from ±45o, as shown in Fig. 6. Note that ±45o corresponds to 
phase angle at ±3 dB of first-order continuous-time filter.  The 
defined tracking bandwidth is therefore the frequency at which 
L crosses the boundaries of the shaded sector in Fig. 6.  
 

 
FIGURE 4: COMPARISON OF X AND Y AXIS TRACKING 

ERRORS FOR NPZ-IGNORE, ZPETC, ZMETC AND 
PROPOSED FBF METHOD APPLIED TO SYSTEM WITH RHP 

NMP ZERO (a = 1.1). THE FBF METHOD IS BASED ON A 
NURBS CURVE WITH 201 CONTROL POINTS 

 
As discussed in Section 2.2, L is an LTI filter for the 

approximate model inversion techniques. However, each row of 
H, the equivalent of L for the proposed FBF technique, acts like 
a separate FIR filter. It is therefore instructive to show the best 
and worst case bandwidths of all the FIR filters (i.e., all the 
rows of H). Figure 7 compares the magnitude and phase plots 
of L (for the approximate model inversion methods) and the 
best/worst FIR filters of FBF’s H matrix for the RHP zero case; 

Fig. 8 shows the same plots for the LHP zero case and Table 4 
summarizes the tracking bandwidths. 
 

 
FIGURE 5: COMPARISON OF X AND Y AXIS TRACKING 

ERRORS FOR NPZ-IGNORE, ZPETC, ZMETC AND 
PROPOSED FBF METHOD APPLIED TO SYSTEM WITH LHP 

NMP ZERO (a = −1.1). THE FBF METHOD IS BASED ON A 
NURBS CURVE WITH 201 CONTROL POINTS 

 
TABLE 3: RMS TRACKING ERROR COMPARISON 

RMS Tracking Error [mm] 

  NPZ-Ignore ZPETC ZMETC FBF 

a =1.1 
(RHP) 

x 2.93×10−1 6.54×10−2 5.74×10−1 2.90×10−3 

y 1.31×10−1 3.58×10−2 2.55×10−1 3.19×10−4

a = −1.1 
(LHP) 

x 1.39×10−2 1.48×10−4 2.79×10−2 7.07×10−8 

y 6.30×10−3 8.13×10−5 1.25×10−2 1.42×10−8 

 

 
FIGURE 6: COMPOSITE TRACKING BANDWIDTH 

CRITERION INCLUDING MAGNITUDE AND PHASE 
DEVIATIONS 

 
One observes that there is a marked difference in the 

tracking bandwidths of NPZ-ignore, ZPETC and ZMETC when 
applied to the RHP and LHP zero cases. In each case, the 
bandwidth is significantly lower for the RHP zero compared to 
the LHP zero. NPZ-ignore provides the best bandwidth of the 
three approximate inversion techniques for the RHP zero case 
as well as the LHP zero case. The worst-case bandwidth of FBF 
is better than those of the approximate model inversion 
methods for the RHP zero case. For the LHP zero case, its best-
case bandwidth is superior to those of the approximate model 
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inversion methods while its worst-case bandwidth is better than 
ZMETC’s. Hence its superior performance compared to NPZ-
ignore, ZPETC and ZMETC. 

 

 
FIGURE 7: TRACKING FREQUENCY RESPONSE FUNCTION 

COMPARISON FOR a = 1.1. THE FBF METHOD IS BASED 
ON A NURBS CURVE WITH 201 CONTROL POINTS 

 

 
FIGURE 8: TRACKING FREQUENCY RESPONSE FUNCTION 
COMPARISON FOR a = −1.1. THE FBF METHOD IS BASED 

ON A NURBS CURVE WITH 201 CONTROL POINTS 
 

TABLE 4: COMPARISON OF TRACKING BANDWIDTHS 

  
NPZ-
Ignore 

ZPETC ZMETC 
FBF 
(best) 

FBF 
(worst) 

Band-
width 
[Hz] 

a = 1.1  
(RHP) 

152 98 67 5000 152 

a = −1.1 
(LHP) 

2504 1823 1317 5000 1744 

4.2. EFFECT OF NUMBER OF CONTROL POINTS 

In the simulation results presented in Section 4.1 above, n 
= 200 was selected for the NURBS curve. The number of 
control points corresponds to the number of basis functions 
used to approximate c(k). Keeping all other factors the same, 
the larger the number of basis functions the better the 
approximation. Therefore, n plays a significant role in the 
tracking performance of the FBF method. It was mentioned in 
Section 2.2 that for perfect tracking the matrix H should be the 
identity matrix. Figure 9 shows a plot of H for different values 
of n. Observe that, as n increases, the contributions of the 
diagonal terms increase and H approaches the identity matrix. 
Figure 10 shows the x-axis tracking error of the system with 
LHP zero for various values of n. One can see that there are 
very significant improvements in tracking performance from n 
= 10 to n = 100. However, the improvements significantly 
dwindle between n = 100, 200 and 300. Note that the trends 
shown in Figs. 9 and 10 for n based on the x-axis tracking error 
of the LHP zero case apply to the other scenarios studied in 
Section 4.1 above.  
 

 
FIGURE 9: PLOTS OF ELEMENTS OF MATRIX H FOR 

DIFFERENT NUMBER OF CONTROL POINTS FOR SYSTEM 
WITH LHP ZERO 

 

 
FIGURE 10: X AXIS TRACKING ERROR PROFILE FOR 

SYSTEM WITH LHP ZERO AS FUNCTION OF NUMBER OF 
CONTROL POINTS 
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4.3. EFFECT OF INITIAL CONDITIONS AND HIGHER 
ORDER DERIVATIVES 

Sections 4.1 and 4.2 have focused on minimizing the 
tracking error. This section focuses on the handling of initial 
conditions (ICs) and higher order derivatives (HODs), as 
discussed in Sections 3.2 and 3.3, respectively. Figure 11 and 
Table 5 compare the results for x axis position, velocity and 
acceleration errors based on computation of p using Eqs. (10), 
(31) and (36) for the LHP system. Notice that the basic 
calculation of p using Eq.(10) and NURBS basis functions 
(with E = 500, n = 15, m = 4) results in large errors in velocity 
and acceleration because it does not consider ICs and HODs. 
The enhanced solution, incorporating ICs of Fig. 3, using 
Eq.(31), reduces velocity and acceleration errors, particularly at 
the beginning of the motion. The velocity and acceleration 
errors can be further reduced by incorporating velocity and 
acceleration information using Eq.(36) (with α1 = 2×10−4, α2 = 
2×10−5); notice however that the reduction of velocity and 
acceleration errors have come to some extent at the expense of 
position errors. 
 

 
FIGURE 11:  X AXIS POSITION, VELOCITY AND 

ACCELERATION TRACKING ERRORS AS FUNCTIONS OF 
TIME FOR BASIC AND ENHANCED SOLUTION 

TECHNIQUES 
 

TABLE 5: TRACKING ERROR COMPARISON FOR BASIC 
AND ENHANCED SOLUTION TECHNIQUES 

 
 Position error 

[mm] 
Velocity error 

[mm/s] 
Acceleration error 

[mm/s2] 

Basic 
 

RMS 4.66×10−3 7.24×100 1.20×104 

Max 1.15×10−2 5.40×101 8.34×104 

Enhanced 
with ICs 

RMS 6.25×10−3 6.18×100 6.97×103 

Max 1.89×10−2 2.00×101 3.23×104 

Enhanced 
with HODs 

RMS 6.49×10−3 5.98×100 6.08×103 

Max 1.99×10−2 2.05×101 2.00×104 

5. REMARKS ON VERSATILITY AND PRACTICALITY 
OF FBF 

The FBF method has been presented in the context of 
discrete time systems but it is also applicable to continuous 
time systems. The key difference is that in continuous time 

domain, W and W are function spaces rather than vector spaces. 
Consequently, the matrix-based least squares solution given in 
Eq.(10) has to be changed to the minimization of a norm of the 
form 

 

{ }
0

min ( ) ( )
i

n

d i i
p

i

x t p u t


   (40) 

 
The continuous time implementation can be achieved, for 
example, by using the Gram-Schmidt orthonormalization 
process [26] to construct a set of orthonormal basis in the 
function space.  

It is worth mentioning a practical advantage that the FBF 
method has over the approximate model inversion techniques 
with regard to implementation in commercial systems. The 
control systems used in many commercial applications, e.g., 
CNC machines and robots, are configured to accept reference 
commands in the form of parametric curves like NURBS. 
Moreover, their controllers are closed and so cannot be 
modified. Therefore, for methods like ZPETC to be used in 
such systems, C(z−1) in Fig. 1 would have to be used to filter 
xd(k) (offline) to yield c(k) which would then be parameterized 
and injected as a reference input to the controller to be executed 
in real time. This would mean a two-step approximation – first 
by approximate model inversion and then by parameterization. 
The FBF approach, on the other hand, would only have the 
approximation related to parameterization.  In such situations, 
the only drawback that FBF may have is with regards to its 
offline computation time. For example using Intel® Xeon® 
processor @ 2.67 GHz and 6 GB RAM, the computation time 
for generating c(k) offline using ZPETC and parameterizing it 
using a NURBS curve (with m = 4 and n = 200) is 0.2496 s, for 
the trajectory given in Fig. 3. Performing the same task with 
FBF (using NURBS basis functions with m = 4 and n = 200) 
takes 0.5460 s; i.e., 0.2964 s longer.  

6. CONCLUSION AND FUTURE WORK 

This paper has presented a novel method for realizing 
accurate tracking control in LTI NMP systems by using filtered 
basis functions (FBF). The desired trajectory to be tracked is 
assumed to be entirely known and the output of the tracking 
controller is represented as a linear combination of user-defined 
basis functions having unknown coefficients. The basis 
functions are forward filtered using the modeled dynamics of 
the NMP system and their coefficients selected to minimize the 
errors in tracking the desired trajectory. As an example, basis 
functions derived from the popular NURBS curve are 
employed to demonstrate the method. Additional benefits of 
NURBS with regards to incorporating initial conditions and 
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tracking of higher order derivatives of the desired trajectory are 
also discussed. Numerical examples are presented, comparing 
the proposed FBF method with three popular tracking 
controllers for NMP systems, namely, NPZ-ignore, ZPETC and 
ZMETC. With a suitable set of basis functions, the FBF method 
is shown to outperform all three controllers by at least one 
order of magnitude under two different tracking scenarios. The 
applicability of the FBF method to continuous-time systems, as 
well as its practicality and ease of use in commercial control 
systems are also discussed. Future work will extend the FBF 
method to MIMO tracking control problems.  
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