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ABSTRACT 
In over-actuated systems, an output can be realized 

through various control effort combinations. It is desirable to 
allocate the control efforts dynamically (as opposed to 
statically) in an optimal manner. In this paper, a proxy-based 
control allocation approach is proposed for multi-input, multi-
output over-actuated systems. Instead of using real-time 
optimization for control allocation, the proposed method 
establishes an energy optimal subspace; it then defines a 
causally implementable proxy to accurately measure the 
deviation of the controlled system from the energy optimal 
subspace using matrix fraction description and spectral 
factorization. The control allocation problem is thus converted 
to a regulation problem, and is solved using a standard H∞ 
approach. The proposed method is validated through 
simulation examples, in comparison with an existing dynamic 
control allocation method. Significant improvements in energy 
efficiency without affecting the controlled output are 
demonstrated. 

 

1. INTRODUCTION 

Over-actuated systems are characterized by the use of more 
actuators compared to the degrees of freedom to be controlled 
[1]. This redundant actuation structure has potential to enhance 
accuracy, work range, fault tolerance, etc., and thus is adopted 
by various applications [2–9]. For example, redundant thrusters 
are employed in spacecraft to preserve maneuverability in the 
event of thruster failure [4]. In servo systems, over-actuation is 
used to improve motion range [2], accuracy [7] and energy 
efficiency [8,10]. Over-actuation also provides a promising 
solution to structural flexibility issues in lightweight motion 
systems [3]. 

A major focus in controlling over-actuated systems is the 
distribution of control efforts among the redundant actuators. 

Due to redundancy, a desired output performance can be 
realized through various distributions of redundant control 
inputs, thus additional criteria are required to determine the 
optimal distribution. This distribution process is referred to as 
control (effort) allocation [11], and the minimization of the 2-
norm (or energy) of the control inputs is commonly selected as 
optimal allocation criterion [5,6,11–17]. Control allocation is 
usually employed in a two-stage framework, in which a high 
level nominal controller (also referred as ‘virtual controller’) 
[5,11–13] determines the non-redundant overall control efforts 
needed to realize the output; while a dedicated allocator 
distributes the control efforts to redundant input channels 
according to the specified additional criteria [11–15].  

Control allocation methods are extensively developed for 
systems with strong input redundancy, where there exists a set 
of control inputs that do not affect system internal states [12–
15]. Under this condition, the 2-norm-minimizing control 
allocation is a quadratic programming problem, to which 
various numerical methods (e.g., redistributed pseudoinverse, 
fixed-point methods) can be applied [14]. However, strong 
input redundancy conditions are restrictive since they require 
exact collocation of actuators or truncation of high order 
dynamics. In practical applications, discarding these dynamics 
may affect the control output (performance) and even lead to 
instability [13].  

To facilitate control allocation considering high order 
dynamics, weak input redundancy is defined as an extension to 
strong input redundancy [16], where the internal states are no 
longer required to be invariant [16–18]. However, weak input 
redundant systems are by nature more challenging since 
optimal dynamic allocation (as opposed to static allocation) 
needs to be considered. General control allocation problems for 
weakly input redundant systems can be solved within the model 
predictive control framework [17], where the computational 
intensive real-time optimization may be restrictive for certain 
applications. Galeani et al. [18] explored static state feedback 
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structures for optimal control allocation using regulator theory, 
and a finite dimension relaxation was employed to reduce the 
computational cost. However, this relaxation leads to a hybrid 
system, and the associated switching events may introduce 
undesirable transients. Zaccarian [16] proposed a dynamic 
allocation method based on a static redundancy model in 
weakly input redundant systems.  While this approach [16] 
greatly simplifies the problem and reduces computational 
burden, it is incapable of optimally allocating dynamic control 
efforts (e.g., control efforts with non-zero frequency content). 
Moreover, the approaches in [16] and [18] both do not 
guarantee invariance of the controlled output (i.e., control 
performance) during control allocation. 

The present authors explored the dual-input, single-output 
(DISO) weakly input redundant systems, and showed that the 
energy optimal inputs satisfy an dynamic optimal control ratio 
[19,20]. The optimal control ratio is shown to be non-causal 
and causal approximation is employed for practical applications 
on a hybrid feed drive [19–21]. To address the energy 
efficiency loss due to approximation, a proxy-based method is 
proposed in [22], where the non-causal ratio is converted to a 
causal stable proxy, which measures the energy efficiency in 
real time and can be regulated to approach energy optimality. 
Building on [22], the proxy-based method for DISO system is 
extended to multi-input, multi-output (MIMO) systems through 
matrix fraction description and spectral factorization in this 
paper. The rest of this paper is organized as follows: In Section 
2, a brief background on optimal control ratio and proxy-based 
control allocation for DISO systems is provided. In Section 3, 
the optimal control subspace, a multivariable proxy and its 
application in control allocation is discussed. The proposed 
proxy-based control allocation is compared in simulations with 
an existing dynamic control allocation method in Section 4, 
followed by conclusions and future work in Section 5. 

 

2. BACKGROUND ON PROXY-BASED CONTROL 
ALLOCATION FOR DISO SYSTEMS 

Consider a linear time-invariant (LTI) DISO system G = 
[G1, G2], with two inputs u = [u1, u2]

T, a single output y and 
disturbance d (shown in Fig. 1), i.e. 

  T

1 2 1 2 dy G G u u G d  (1) 

(Here disturbance d represents general external inputs such as a 
reference signal, noise, etc.) This system has more inputs than 
outputs, and is defined as weakly input redundant [16] as  

  Ker s G  (2) 

for almost all s, where Ker yields the kernel (null space) of the 
corresponding matrices. In weakly input redundant systems, 
there exists a family of input trajectories that yield the same 
output trajectory due to redundancy [16,17]. Assume a nominal 
control input u0 which yields a desirable output y0 under 
disturbance d0, i.e., 

0 0 d 0y Gu G d  (3) 

The family of control signals which replicate y0 under d0 
formulates a set Ω, given by  

    2
0 0: 0   u u G u u 

 
(4) 

As shown in Fig. 1, the goal of energy optimal control 
allocation is to formulate a mapping P between u0 and u	∈ Ω 
such that control energy is minimized without altering y = y0. 
 

 
FIGURE 1: GENERALIZED BLOCK DIAGRAM FOR 

CONTROL ALLOCATION 
 

Define a typical quadratic energy cost  

   
T

1 11 12 1T

2 12 22 2

u R R u
J dt dt

u R R u

     
      

     
 u u Ru  (5) 

with a positive definite square symmetric R, and define set Ω as 
the optimization space. The energy optimal control signal’s 
variation should satisfy  

 T0 0J dt    u Ru  (6) 

Also, the variation should satisfy 

1 1 2 2 0G u G u    
(7) 

to ensure u remains in Ω defined in Eq. (4). Combining Eqs. (6) 
and (7), and applying the fundamental lemma of calculus of 
variations [23], the optimal control inputs (marked with ^) 
satisfy an optimal ratio  [19,20,22] defined as  

* *
* 1 22 1 12 2

* *
2 11 2 12 1

ˆ

ˆ
u R G R G

u R G R G






  (8) 

where the superscript * represents the adjoint operator [24], 
which leads to a non-causal relationship between the control 
inputs that minimize J. In order to causally evaluate the 
deviation from this control ratio, a proxy-based allocation 
method is proposed in [22], where proxy uD is defined as 

D 2 1 1 2

* * * *
22 1n 12 2n 11 2n 12 1n

1 2;

u u u

R G R G R G R G

 

 
 

 

  
 (9) 
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where G1n and G2n are respectively the numerators of the 
original transfer functions G1 and G2, ψ is a user-defined 
denominator to ensure properness, and β1 and β2 formulate a 
factorization of β*. The adjoint operation of numerators can be 
causally implemented and thus uD can be evaluated in real time. 
Accordingly, the control allocation problem is converted to a 
regulation problem on proxy uD, which can be realized using 
various traditional single-input, single-output control design 
methods. However, the proxy-based allocation framework 
proposed in [22] is only applicable to DISO systems; the rest of 
this paper extends it to MIMO systems. 
 

3. PROXY-BASED ENERGY OPTIMAL CONTROL 
ALLOCATION FOR MIMO SYSTEMS 

3.1. ENERGY OPTIMAL SUBSPACE  

Consider a general MIMO weakly input redundant system 
given by 

d y Gu G d  (10) 

where y 	∈ Թny  is the output of the system, while u∈ Թnu , 
d 	∈ Թnd  are the control input and disturbance, respectively. 
Weak input redundancy requires nu > ny, and  

r u yn n n   (11) 

is defined as the redundancy degree. Without loss of generality, 
the first ny control inputs are assumed to formulate a non-
redundant control input set, i.e. the overall system transfer 
function matrix is divided as 

TT T
p r p r;       G G G u u u  (12) 

where Gp is a nonsingular square transfer function matrix from 
the first ny principal control inputs up to the outputs, and Gr (ny 
× nr) is a transfer function matrix from the remaining nr 
redundant control inputs ur to the outputs. Due to the nature of 
over-actuated systems, there exists null space within which the 
control inputs’ variations would not affect the system outputs, 
i.e. 

p 1
p r p p r r

r


 


 

       
 

u
G G 0 u G G u

u
 (13) 

Same as in the DISO systems, a quadratic cost is defined for the 
MIMO system as  

 
T

p prp pT
T
pr rr r

J dt dt
    

      
    

 
R Ru u

u u Ru
R Ru u

 (14) 

where R is a positive definite symmetric matrix divided 
according to the first ny principal control inputs and nr 
redundant inputs. To achieve energy optimality, the variation of 
J should satisfy 

T

p prp p
T
pr rr r

0J dt





    
     

    


R Ru u

R Ru u
 (15) 

Consider the variation within the null space specified by Eq. 
(13) 

   T T1 1
p r r p p p r r pr r

T T T
r pr p r r r 0dt

 

 

   

  
 G G u R u G G u R u

u R u u R u
 (16) 

Taking the adjoint operation of transfer function matrix Gp
-1Gr  

T 1 * T
r p r p pr p

1 *
p r pr r r

{[( ) ]

[( ) ] } 0dt

 





  
 u G G R R u

G G R R u
 (17) 

The following condition holds for the energy optimal control 
inputs based on the fundamental lemma of calculus of variation 
applied to multivariable vectors [23]. 

   * *1 T 1
p r p pr r p r pr rp
            

G G R R u R G G R u  (18) 

Note that (Gp
-1Gr)

* is non-causal (because of the adjoint 
operator), and the relation in Eq. (18) formulates an optimal 
control subspace, which is a natural extension of the concept of 
the optimal control ratio in Eq. (8). 
 

3.2. PROXY AS MEASUREMENT OF DEVIATION FROM 
THE OPTIMAL CONTROL SUBSPACE 

In order to establish a causal stable deviation measurement 
(proxy) from the optimal subspace specified by Eq. (18), a 
decomposition similar to that for DISO systems in Eq. (9) is 
needed. However unlike in Eq. (9) where the scalar transfer 
function’s numerators and denominator can be directly 
extracted, Gp

-1Gr is a transfer function matrix and thus matrix 
fraction description [25] is used. Here Gp

-1Gr is written as 

       1 1
p rs s s s G G N D  (19) 

where N (ny × nr) and D (nr × nr) are coprime transfer function 
polynomials without denominators, such that Eq. (19) 
formulates a right coprime fraction of Gp

-1Gr. Note that here N 
and D are not unique: all possible coprime N and D pairs are 
related to each other through unimodular transformation 
matrices [25]. The importance of this right coprime fraction is 
that N and D only contain the numerator polynomials, whose 
adjoint  

         * *T T;s s s s   N N D D  (20) 

are also numerator polynomials due to s*= –s [26], which does 
not lead to instability. Deviation from Eq. (18), which 
originally cannot be causally evaluated, is measured by proxy 
uD defined as   

D p p r r u β u β u  (21) 
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where 

 
 

1 * * T
p p pr

1 * *
r r pr





 

 

β ψ N R D R

β ψ D R N R
 (22) 

Here ψ is defined as a square (nr × nr) nonsingular numerator 
polynomial with minimum phase zeros such that both ψ-1D* 
and ψ-1N* are proper and stable transfer function matrices, and 
can thus be evaluated in real time. 

It is clear from Eqs. (18) and (21) that enforcing uD = 0 
ensures energy optimality. However this perfect condition may 
not be always satisfied due to various reasons such as limited 
control bandwidth, non-minimum phase (NMP) zeros, etc. [22]. 
Therefore, it is instrumental to understand how nonzero uD is 
related to the energy cost J. For any control signal u = û +δu 
which belongs to Ω(û), its energy cost J is decomposed into 

 
   cc

T T T

ˆ

ˆ ˆ ˆ2

JJ J

J dt dt dt



      
u u

u u Ru u Ru u R u
  

 
(23) 

where J(û) and J(δu) are positive definite terms representing 
the optimal energy cost and energy cost of δu. Note that δu is 
assumed to satisfy the null space condition specified by Eq. 
(13), such that the cross coupling term Jcc = 0, i.e. 

T

p prp p
Tcc
pr rr r

T T T T T
p p p p pr r r pr p r r r

T 1 * T
r p r p pr p

1 *
p r pr r r

ˆ
2

ˆ

ˆ ˆ ˆ ˆ2

ˆ2 {[( ) ]

ˆ[( ) ] } 0

J dt

dt

dt




   

 



    
     

    

   

 

  






R Ru u

R Ru u

u R u u R u u R u u R u

u G G R R u

G G R R u

 (24) 

This zero cross coupling term indicates that the J(δu) comprises 
the positive definite energy increment J(u) = J(û) + J(δu) from 
the optimal control inputs. Knowing that uD = 0 when u = û, 
Eq. (21) can be re-written as  

D p p r r  u β u β u  (25) 

Combined with Eq. (13), δu is related to the proxy uD as 

 
 

1
1 1

r p p r r D D

1
1 1 1

p p r p p r r D D





 


  

      

    

u β G G β u DΠ ψu

u G G β G G β u NΠ ψu
 (26) 

where Π is defined to be a self-adjoint system given by 

 
*

   
        

N N
Π R

D D
 (27) 

and according to Eq. (22),  

 1 1 1
p p r r

   β G G β ψ ΠD  (28) 

Applying Parseval's theorem and the frequency domain 
expression from Eq. (26) to (28), the energy increment due to 

deviation from optimal subspace δJ = J(u) – J(û) = J(δu) is 
given by 

   

 

 

T *

*
** * 1 1

D D

** * 1
D D

1

2

1

2

1

2

J dt

d

d

      








 





 

   
        



 




Π

u R u u R u

N N
u ψ Π R Π ψu

D D

u ψ Π ψu


 

(29) 

The energy increment δJ would be the square of the two norm 
of the proxy uD, i.e. 

2

D 2
J  u  (30) 

given 

*Π ψψ  (31) 

The implication of Eq. (30) is that the deviation of uD from zero 
is directly proportional to the deviation of J(u) from its optimal 
value of J(û). Accordingly, decreasing the 2-norm of uD via 
regulation of the proxy uD strictly enhances the energy 
efficiency. 

Notice from Eq. (27) that the self-adjoint Π consists only 
of zeros symmetrically placed about the imaginary axis. One 
can therefore collect all the minimum phase zeros of Π into a 
stable and causally implementable ψ; this decomposition in Eq. 
(31) is referred as left spectral factorization [27].  Note that N 
and D are coprime (share no common zeros) and R is positive 
definite, indicating Π has no zeros on the imaginary axis 
because  

   
 

 
 

T

0
j j

j
j j

 


 
    

         

N N
Π R

D D
 (32) 

holds for all s = jω. Under this condition, stable and minimum 
phase solutions ψ to Eq. (31) always exist [27]. 
 

3.3. PROXY-BASED ALLOCATOR DESIGN 

As Fig. 1 illustrates, the control allocator P aims at 
redistributing control efforts u0 within Ω(u0) such that the 
control performance is preserved. Therefore, according to Eq. 
(13), (as shown in Fig. 2) it is assumed that:  

1
0

0 1
0





 
   

 

Nψ
u u v

Dψ
 (33) 

where v	∈ Թnr is an arbitrary signal while ψ0 is a user defined 
nonsingular square polynomial transfer function numerator 
matrix with minimum phase zeros; ψ0 is a pre-filter that helps 
to eliminate undesirable pole dynamics in the original system. 
Note that Eq. (33) satisfies the null space defined in Eq. (13) as  
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1
0

p r 1
0





 
    

 

Nψ
G G v 0

Dψ
 (34) 

 

 
FIGURE 2: PROPOSED CONTROL ALLOCATOR 

 
Assume the proxy of the nominal controller u0 (before 

allocation) is defined as  

D0 p r 0
   u β β u  (35) 

Then the proxy after allocation uD is given by 

v

1
0

D D0 D D0 p r 1
0





 
         

 
H

Nψ
u u u u β β v

Dψ




 
(36) 

where Hv is a square (nr × nr) dynamic system, mapping v to its 
manipulation of the proxy ΔuD. Notice from Eq. (36) that one 
possibility is to make uD = 0 via feedforward control using 
v = −Hv

−1uD0, which ideally would yield the energy optimal 
control input. However, such a feedforward design is not robust 
and is limited by possible NMP zeros within Hv [21]. Therefore 
a feedback relationship 

fb Dv H u  (37) 

is assumed as shown in Fig. 2. With this assumption, Hfb can be 
designed using various MIMO controller synthesis methods. 
Here a representative H∞ controller synthesis framework [28] is 
illustrated in Fig. 3, since infinity system norm marks the upper 
bound on the signal 2-norm gain. In Fig. 3, Wd is a weighting 
filter describing the disturbance profile; vw is signal v filtered 
by Wv to penalize the high frequency component; U0,d 
represents the transfer function matrix from disturbance to the 
nominal control u0 given by  

  1

0,d d


 U I CG CG  (38) 

Note that U0,d is invariant with respect to both P and Hfb, since 
the allocation process works in the null space and output is 
invariant. The equivalent plant marked in the blue box in Fig. 3 
is referred to as L, i.e. 

w

D

 
 

 

v
Ld

u
 (39) 

Through feedback Hfb, the infinity norm of L is minimized with 
standard H∞ solvers. In cases where the allocator is expected to 
be designed without knowledge of the nominal controller C, the 
frequency profile of uD0 can be assumed to be correlated with 
the disturbance frequency profile, i.e. the two blocks with 
dashed lines in Fig. 3 are omitted and the sizes of Wd and d are 
adjusted to conform to the dimension of uD0. 
 

 
FIGURE 3: H∞ CONTROLLER SYNTHESIS OF 

CONTROL ALLOCATOR 
 

4. SIMULATION EXAMPLES 

Simulation examples from [16] are used to illustrate the 
proposed proxy-based control allocation method. System G is 
defined to be a 3-input, 1-output system with state space 
realization  

0.157 0.094 0.87 0.253 0.743

0.416 0.45 0.39 0.354 0.65

0 1 0 0 0

A B

C D

  
   

     
    

 

 (40) 

As expressed in Eqs. (10) and (12), the first ny = 1 input 
channel formulates a non-redundant set and the transfer 
function matrix is divided as  

 
 
 

T

p r 2

0.39 0.77

0.354 0.1403

0.65 0.3185

0.607 0.1098

s

s

s

s s

 
  
       

G G G  

(41) 

Note that the system G is a stable system with NMP zeros in 
each control channel. With this matrix partition, Gp

-1Gr is 
achieved and corresponding right coprime matrix fraction (N 
and D) defined in Eq. (19) is calculated as  
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   

 

1
p r

1

0.90769 0.1403 1.6667 0.3185

0.77 0.77

1.3173 0.77
0.4793 0.90769 0.1403

1 0

s s

s s

s
s





  
    

  
     

 
N

D

G G



 (42) 

With same R = diag(100,1,1) defined in [16], the self-adjoint 
system is given by  

 
    

*

24.913 41.429 0.1203

41.429 0.1203 83.39 0.163 0.163

s

s s s

   
        

  
      

N N
Π R

D D
 (43) 

and its spectral factorization is calculated as  

   
4.9913 0

8.3002 0.1203 3.8075 0.2901s s

 
     

ψ  (44) 

Note that although the original system G contains NMP zeros, 
Π is always self-adjoint and a minimum phase spectral factor ψ 
can always be found to satisfy Eq. (31).  Accordingly, βp and βr 
defined in Eq. (22) are given by 

T

p

r

3.272 0.8715
9.4351

0.2901

0.2639 0.2

0.838 0.2717 0.4368 0.05252

0.2901 0.2901

s

s

s s

s s

    
 

    
   

β

β

 (45) 

which is causal and stable, thus uD is evaluated and regulated in 
real time. 

The same LQG controller as in [16] is used as the nominal 
controller C. Without loss of generality, disturbance d defined 
in Fig. 1 is assumed to be affecting output from the first control 
channel, i.e. Gd = G(:,1). Here two nominal disturbance profiles 
are considered: 
(a) Step disturbance: d = 1 (t > 0); 
(b) Sinusoidal disturbance at 1 Hz: d = 100sin(2πt); 
Accordingly, Wd is defined as an integrator with resonance 
term 

 
2

0
d 2 2

0 0

1

2
s

s s s


    

W   (46) 

where ω0 = 2π rad/s (i.e. 1Hz), ζ = 0.1 and  ε = 10-5 rad/s are 
used. In other words, the internal model principle [29] is 
employed in Wd to magnify the targeted frequency ranges. 
Weighting filter Wv in Fig. 2 is defined as a high pass filter: 

  2 1
v

1 2

s
s

s

 
 




W   (47) 

where ω1 = 100π rad/s (i.e. 50 Hz) and ω2 = 1000π rad/s (i.e. 
500 Hz). In the same vein, ψ0

-1
 in the allocator structure (Fig. 3) 

is designed to be a diagonal transfer function consisting of 
identical third order low pass Butterworth filters each with a 10 
Hz cutoff frequency. The designs of both Wv and ψ0 ensure that 
only the low frequency contents of the control efforts are 
redistributed within the allocator. This arises from practical 
robustness concerns as the model tends to be less accurate at 
higher frequencies. 

Following the H∞ design framework introduced in Fig. 3, 
Hfb is designed without considering the controller dynamics, 
such that L maps the input uD0 to the output [vw

T, uD
T]T. This 

synthesis calculation is conducted with MATLAB 8® H∞ 

synthesis tool. The open loop (OL) and closed loop (CL) Bode 
plots of L are illustrated in Fig. 4. Note that, in open loop, input 
uD0 does not affect vw, and it only diagonally contributes to the 
proxy uD. These diagonal components are inherited from Wd 
defined in Eq. (46), and are the major contributors to L in open 
loop. The large open loop DC gains of L are flattened and the 
resonance is smoothed with closed loop feedback Hfb, 
indicating that the low frequency components as well as the 
resonant peak in uD0 are regulated. 

 

 
FIGURE 4: EQUIVALENT SYSTEM L IN 

 H∞ SYNTHESIS OF HFB 
 
The output and control inputs of the constant step 

disturbance (i.e. Case (a)) are shown in Fig. 5. It is noticeable 
that the original LQG control input u0 has conflicting control 
inputs and does not yield an energy efficient combination. Both 
the allocator in [16] and the proposed proxy-based allocation 
method converge to an optimal solution where the heavily 
penalized u1 is avoided. Notice that, compared to the allocation 
method proposed in [16], the proxy-based allocation method 
does not change the original system output while the allocator 
in [16] introduces large deviations from the original system 
output. This difference fundamentally arises from the fact that 
the dynamic allocation method in [16] employs statically 
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defined null space while the proxy-based method both defines 
the null space and optimally allocates control efforts in 
broadband. This difference is further illustrated in Case (b) with 
sinusoidal disturbance, whose output and control inputs are 
shown in Fig. 6. The heavily penalized u1 is minimally 
redistributed by the allocator in [16], while it is almost fully 
cancelled in the proposed proxy-based allocation scheme. The 
three input channels of the proposed proxy-based method work 
synergistically and thus greatly reduce the energy cost J 
without altering the controlled output. 
 

 
FIGURE 5: CONTROL ALLOCATION RESULTS WITH 

STEP DISTURBANCE (CASE (a)) 
 
To further quantify the performance of the allocators, 

signal Δy is defined as the output deviation from the case 
without allocation. Also, the steady state power consumption 
for each input P1, P2, P3 and their combination Ptotal are defined 
by their contributions to the total J in unit time. Pഥtotal  is the 
overall power averaged over the evaluated time horizon (i.e., 
including transients). The statistics for the deviations and power 
consumptions for Cases (a) and (b) are listed in Tab. 1. It is 
shown that the allocator in [16] can introduce severe output 
deviation, especially for the step disturbance in Case (a) where 
the disturbance is not continuous, while the proxy-based 
method’s output deviations are negligible for both cases. In 
Case (a), both allocators consume less than 1% of the overall 
average power consumption of the nominal controller. Note that 
the overall average power consumption	ሺPഥtotalሻ	of the proposed 
allocator is a bit higher than that of the allocator in [16] because 
of the additional effort it takes to keep the output unaltered 
during transients; the allocator in [16] is unable to maintain the 
desired output during transients hence it consumes less power. 
However, both of the allocators converge to same static optimal 
control as shown in Fig. 5, resulting less than 2% steady state 

power difference (as observed from Ptotal). The benefit of the 
proposed allocator is more pronounced in Case (b), where the 
disturbance signal is more dynamic. The steady state power 
consumption of the allocator in [16] over the no allocator case 
is 20% less, while the proposed proxy based allocator provides 
99% less steady state power consumption than the no allocator 
case, due to its capability to optimally redistribute dynamic 
control efforts (at non-zero frequencies). Note that in Case (b) 
the proposed allocator introduces more significant transients in 
some of the control efforts. This arises from the presence of 
NMP zeros in the controlled system, coupled with the relatively 
fast allocator dynamics. Even with these transients, the 
proposed allocator is capable of achieving 58% less overall 
average power consumption than the allocator in [16], based on 
Pഥtotal. 
 

 
FIGURE 6: CONTROL ALLOCATION RESULTS WITH 

SINUSOIDAL DISTURBANCE (CASE (b)) 
 

TABLE 1: OUTPUT DEVIATION AND STEADY STATE 
POWER CONSUMPTION COMPARISON 

 
max 
|Δy| Pഥtotal 

Steady State Power 

P1 P2 P3 Ptotal 

(a) 

Without 
allocation 0 263 309 21 0 331 

Allocator 
in [16] 1.00 5.2 0.04 0.08 1.92 2.04 

Proposed 
allocator 3×10-5  8.88 0.07 0.05 1.94 2.06 

(b) 

Without 
allocation 0 14.87 9.90 0.11 0 10.02 

Allocator 
in [16] 0.46 8.52 7.68 0.20 0.08 7.97 

Proposed 
allocator 1×10-5  3.56 0.01 0.06 0.01 0.08 
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5. CONCLUSION AND FUTURE WORK 

An elegant method for energy optimal control allocation 
for multi-input, multi-output linear time invariant over-actuated 
systems is proposed. Based on a quadratic energy cost, an 
optimal subspace is defined to describe the internal relationship 
of optimal control inputs. This generally non-causal optimal 
relationship is rearranged using matrix fraction description and 
spectral factorization, such that a causal and stable proxy is 
defined to measure the deviation from the optimal subspace. 
The norm of the proxy is shown to accurately measure the 
energy increment from optimality, and thus the control 
allocation problem is converted into a regulation problem, and 
is solved with standard H∞ synthesis tools. The proposed proxy-
based control allocation is compared with an existing dynamic 
allocation method in simulation studies. Significant 
improvements in energy efficiency without affecting system 
outputs are observed, especially under the influence of dynamic 
disturbances (at non-zero frequencies). Issues of transient 
shaping, constraints handling, nonlinear extensions and 
robustness will be discussed in future works. 
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