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ABSTRACT 
Four-point contact between ball and raceways is common 

in machine elements like ball bearings and ball screws. The 

ideal four-point-contact machine element is designed with pure 

rolling (i.e., no sliding at contact points) to minimize friction. 

However, this ideal may not always be achieved, leading to 

sliding and higher frictional forces. In this paper, a simplified 

analytical model for rolling/sliding behavior and friction in 

four-point contact is developed, based on Coulomb friction 

model and rigid body assumption. It is found that pure rolling is 

only possible when the contact-point geometry satisfies a 

certain relationship. When pure rolling condition fails to hold, 

the sliding contact point(s) can be determined analytically as a 

function of contact forces and contact angles. Case studies are 

presented to demonstrate how the proposed model could 

elucidate the roles of misalignments, manufacturing errors and 

loading conditions on rolling/sliding behavior and friction.  

1. INTRODUCTION 
Rolling element machine components such as rotary and 

linear ball bearings and ball screws are used in a wide range of 

machines to reduce friction. These machine components are 

commonly designed with four-point contact between ball and 

raceways because it offers increased rigidity and load capacity 

in a compact configuration [1]. Four-point contact is also 

adopted to reduce backlash and meet dynamic requirements of 

machine components [2]. Typically, four-point contact is 

achieved by placing oversized balls in Gothic-arch-type 

grooves or by using split raceways [1].  

The rolling/sliding behavior at the contact interface of ball 

and grooves is very important in determining the friction 

behavior of four-point-contact machine elements. Sliding is 

characterized by non-zero relative linear velocity between the 

two surfaces at the contact point [3]; while rolling means there 

is no relative linear velocity at the contact interface. Sliding 

friction loss is typically 102−103 larger than that of rolling for 

metal material and parts [4–6]. Therefore, pure rolling is 

desired to minimize friction loss. However, imperfections such 

as manufacturing errors and misalignments, together with 

external loading, can induce sliding at some contact points, 

causing large increases in friction [7]. It is therefore important 

to understand when and how sliding occurs at contact points.    

The typical modeling process for rolling/sliding behavior 

and friction of rolling elements is achieved by using 

comprehensive numerical models [7–9]. In such models, the 

ball motion is assumed, and the relative linear and angular 

velocity field between each ball and raceways is established 

over the contact area. Accordingly, the total frictional force and 

moment are obtained by integrating infinitesimal frictional 

forces as a function of the velocity field and contact stress 

distribution over the contact area. Static equilibrium is 

established including friction for each ball to back solve the 

ball motion which is compared to the assumed ball motion; the 

process is repeated iteratively until the solution converges. 

Though comprehensive, such iterative numerical solutions are 

computationally expensive and do not yield general insights 

into conditions that determine rolling/sliding of balls.   

As an alternative to comprehensive models, simplified 

models have also been developed for studying rolling/sliding 

behavior and friction of balls in machine elements. For 

example, Jones [10] developed the so-called “race control 

theory” that requires one of the contacts in a two-point bearing 



 2 Copyright © 2017 by ASME 

to maintain pure rolling while spinning occurs only at the other 

contact. In his model, details about the contact area are ignored, 

hence frictional forces are only functions of the friction 

coefficient, normal contact force and relative velocity at the 

contact point. These simplifying assumptions are based on the 

experimental results and are proved to be valid for bearings 

under normal operating conditions. Halpin and Tran [1] replace 

Jones’ “raceway control theory” with a minimum energy 

criterion to allow its use in four-point contact. However, though 

simplified, these models [1,10] do not yield analytical 

solutions; hence they do not provide insights into rolling/sliding 

behavior and the resultant frictional forces.  

The key contributions of this paper are in: (1) proposing a 

simplified analytical model for rolling/sliding behavior and 

friction in four-point-contact rolling-ball machine elements, and 

(2) deriving insights from the model that could be useful for 

design and analysis of four-point-contact rolling-ball machine 

elements. The paper is organized as follows. In Section 2, rigid 

body assumptions are made about the balls, leading to point 

instead of area contact. By adopting the Coulomb friction 

model with steady-state dynamic conditions, analytical 

conditions for rolling/sliding behavior of balls are derived, 

along with the resultant frictional forces and power loss. 

Insights emanating from the proposed analytical model, which 

could be very useful for design and analysis of four-point-

contact rolling-ball machine elements, are also discussed. 

Section 3 presents two case studies that demonstrate how the 

proposed model could shed light on the roles of misalignments, 

manufacturing errors and loading conditions on rolling/sliding 

behavior and friction. Finally, conclusions and future work are 

presented in Section 4. 

2. ROLLING/SLIDING MODELING FOR FOUR-POINT 
CONTACT 
There are many different forms of four-point contact in 

machine components such as ball bearings, linear guides and 

ball screws. But four-point contact is similar in all these 

components. Without loss of generality, Fig. 1 shows the basic 

configuration where a ball is in four-point point contact with 

two linear rails. It can be generalized to ball bearing or ball 

screw applications with circular or helical grooves instead of 

linear rails. In the setup, the bottom groove is fixed and the top 

groove is moving at constant velocity of magnitude v.  

 
Figure 1. Basic configuration of four-point contact 

As our assumption, the contact area is represented as a 

point, on which normal contact force and frictional force are 

concentrated. Normal contact forces as a result of external 

loading, are calculated a priori based on their own static 

equilibrium. Frictional forces based on Coulomb friction law 

are assumed not to affect the normal contact forces. The basic 

idea is to establish static equilibrium of force and moment for 

the friction generated due to rolling/sliding behavior, and back 

solve the assumed ball motion. 

2.1. Rigid Body Kinematics 
Friction is a function of ball motion, it is highly dependent 

on the rolling/sliding behavior of the ball. Here the kinematics 

of the four-point-contact ball is first introduced. Figure 2 

depicts the cross section of the basic configuration shown in 

Fig. 1. Let us define a global coordinate system (CS={x, y, z}), 

fixed in space with its z-axis passing through ball center and its 

xy-plane parallel to the cross section. A ball, with radius RB, is 

in four-point contact with the two grooves at BL, BR, TR and 

TL (representing Bottom/Top and Left/Right) points. The four-

point contact happens at the cross section with contact angles 

βBL, βBR, βTR and βTL respectively measured from ±y-axis (see 

Fig. 2), so βBL, βBR, βTR and βTL∈(0, π/2). Local coordinate 

systems CSBL, CSBR, CSTR and CSTL are established for the 

corresponding contact points such that local z-axes are parallel 

to global z-axis and local y-axes point to the origin of global 

coordinate system CS as shown in Fig. 2. The movement of top 

groove in global z-direction at constant velocity v induces 

movement of the ball through frictional forces. Assume at 

steady state, the ball translates with linear velocity vB in global 

z-direction (i.e., vB={0, 0, vB}T in vector form) and rotates with 

Ω (={ωx, ωy, ωz}T) about an axis passing through the ball 

center.  

 
Figure 2. Geometry, global and local coordinate systems, 

and kinematic variables for the four-point contact 

Linear velocities at the contact points on both ball side and 

groove side can be expressed based on rigid body kinematics. 

Focusing on the BL contact point, qBL is defined as the vector 

from the ball center to the BL contact point and is given in 

global coordinate system CS as 
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Since the bottom groove is fixed, linear velocity at the BL 

contact point on the groove side is zero. Thus the relative 

velocity at the BL contact point is  

BL BL BL   v v 0 v  (3) 

The relative velocity expressed in local coordinate system 

CSBL can be formulated as  

 

 

 

 
BL

BL BL,

T

BL BL CS-CS BLBL BL,

BL BL,

B

B B BL B BL

0

cos sin

x

y

z

z

x y

R

v R R



   

 
  

     
 
  

 
 

  
   

v

v v T v

v
 (4) 

where TCS-CSBL is the transformation matrix from CSBL to CS 

given by 
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The local x- and z- components of the relative velocity in Eq. 

(4) are of interest because they determine the sliding/no sliding 

state of the contact point. If they are both zero, there is no 

sliding at the contact point; if any of them is non-zero, the 

contact point is sliding. Following the same procedure, the 

relative velocities at other contact points can be derived as 

 

 

 

 

 

 

BR BR, B

B B BR B BRBR BR,

TR TR, B

B B TR B TRTR TR,

TL TL, B

B B TL B TLTL TL,

,
cos sin

,
cos sin

cos sin

x z

x yz

x z

x yz

x z

x yz

R

v R R

R

v v R R

R

v v R R



   



   



   

      
   

      

      
   

       

      
   

     

v

v

v

v

v

v 

 (6) 

Observe that the local x-components of relative velocities for 

the four contact points are all the same as given by ωzRB. 

Ideally pure rolling (i.e., no sliding at all four contact points) is 

desired so that friction loss is minimized. In order for pure 

rolling to exist, ωz=0 has to be enforced. The following 

subsections mainly deal with ωz=0. The case of ωz≠0 will be 

examined at the end of this section. 

2.2. Condition for Pure Rolling (No Sliding) 
Since ωz=0 is enforced, the local x-components of relative 

velocities in Eqs. (4) and (6) are all zero. The local z-

components of relative velocities can be stacked together as   
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(7) 

Notice here because the local and global z-axes are aligned, the 

relative velocities in local and global CS are the same. Again, 

pure rolling is desired, which means 

 

BL,

B

BR,

4 3
TR,

TL,

0 0

0 0

0

0

z

z

v x

z

y

z

v

A
v

v






     
             

         
       

           

v

v

v

v

 (8) 

It is an overdetermined system, so solution only exists when Av 

satisfies the condition: 
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or 
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Graphically, the relationship in Eq. (10) means the two lines 

passing through the two contact points on the same groove are 

parallel as shown in Fig. 3. The two lines also gather all the 

points with zero relative velocities, so they are defined as “zero 

velocity lines” in this paper.  

 
Figure 3. Graphical representation of pure rolling condition 

If the condition in Eqs. (9) or (10) (i.e., Fig. 3) holds, the 

unique solution of ball motion for pure rolling in Eq. (8) is 
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(11) 

It can be observed that ωy/ωx=(cosβBL−cosβBR)/(sinβBL+sinβBR), 

the ratio is exactly the same as in Eq. (10), meaning that the 

rotating axis of the ball is also parallel to the two zero-velocity 

lines in Fig. 3. Ideally, when pure rolling happens, friction loss 

is zero because there is no relative velocity between the two 

mating surfaces at any contact point.  

If the condition in Eqs. (9) or (10) (i.e., Fig. 3) fails to hold 

due to imperfections such as manufacturing errors, 

misalignments and/or external loading, pure rolling do not 

exist, and sliding must take place. An observation of Av in Eq. 

(7) is rank(Av)=3 (proof can be found in Annex A. 1), indicating 

that at least three equations in Eq. (7) can be set to 0. The 
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physical meaning of it is three-point rolling is always possible 

kinematically. It also implies that if there is only two-point or 

three-point contact, pure rolling with zero friction loss is 

always possible.  

Other than pure rolling (i.e., no sliding), there are many 

possible combinations of sliding and no sliding for the four 

contact points: one-point sliding, two-point sliding, three-point 

sliding and four-point sliding. The conditions and behaviors for 

these cases are presented in the following two subsections. 

2.3. One-point Sliding 
There are four possible configurations of one-point sliding 

in four-point contact, namely, any of the four contact points can 

be sliding. The questions are: (1) Can static equilibrium of 

frictional force and moment be established when rolling/sliding 

friction is taken into consideration (existence of solution)? (2) 

Is the solution unique?  

 
Figure 4. Graphical representation of TR sliding 

Without loss of generality, let us assume that only the TR 

contact point is sliding. The graphical representation is shown 

in Fig. 4, the zero-velocity lines pass through the three non-

sliding contact points. The TR contact point is deviated from 

the zero-velocity line, so its relative velocity is non-zero (i.e., 

there is sliding). The kinematic relationship for the non-sliding 

contact points is  
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It has a unique solution with the same expression as Eq. (11), 

because rank(A̅v)=3 (proof can be found in Annex A. 1). The 

relative velocity in the sliding contact point TR is  
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According to Coulomb friction law, it gives rise to a sliding 

friction in +z-direction with magnitude 

 TR, k TR TR,sgnz zf F  v  (14) 

where μk is the kinetic friction coefficient and FTR is the normal 

contact force. Put it in global coordinate system CS in vector 

form, it is  
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The moment of fTR about the ball center is  
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The sliding friction of the TR contact point is determined 

in Eqs. (14)-(16) once ball motion is specified, but the rolling 

friction of the other three contact points are not. Let us assume 

the rolling friction in the BL contact point has components fBL,x 
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Similarly, fBR,x and fBR,z, fTL,x and fTL,z are assumed for the BR 

and TL contact points, and fBR, MBR, fTL, MTL are obtained 

following the same procedure in Eqs. (17) and (18). The static 

equilibrium of frictional force and moment for the ball is 
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BL BR TR TL

BL BR TR TL

= + + + =

= + + + =









f f f f f 0

M M M M M 0
 (19) 

It has a unique solution given by 
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The local x-components of the rolling frictions are all 0. 

Focusing on the non-zero local z-components, the signs of the 
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are different from those of the other contact point pair. It is 

required for the frictional force and moment to balance.  

The rolling forces need to satisfy the following constraints 

according Coulomb friction law 

BL,z k BL

BR,z k BR

TL,z k TL

,

,

f F

f F

f F













 (21) 

which gives 

TR BL BR TL, ,K K K K  (22) 

where K for each contact point is defined as 

     

     

     

     

BL
BL

BR TR TR TL TL BR

BR
BR

BL TL TR TL TR BL

TR
TR

BL BR BL TL BR TL

TL
TL

BL BR BR TR BL TR

,
sin sin sin

,
sin sin sin

,
sin sin sin

sin sin sin

F
K

F
K

F
K

F
K

     

     

     

     


    


    


    


    

 (23) 

All K values are positive (proof can be found in Annex A. 1). 

There is a characteristic parameter K associated with each 

contact point. Taking TR as example, KTR is proportional to the 

normal contact FTR and inversely proportional to the sum of 

three sinusoidal terms of the contact angles other than its own 

(βBL, βBR and βTL but no βTR). The parameter K for TR contact 

point needs to be smallest among the four for TR to be sliding 

as shown by inequality (22). The existence and uniqueness of 

one-point sliding is thus proved. 

Remark 1. In fact, the condition for the TR contact point to 

be sliding in (22) can be generalized to other points sliding: 

sliding happens and only happens in the contact point whose 

characteristic parameter K given in Eq. (23) is the smallest 

among the four contact points. 

In those contact points with no sliding, no friction loss is 

generated because there is no relative velocity at the contact 

interface. Friction loss only generates at the sliding contact 

point. Measured in power, it is  

 ,X X k , X BL,BR,TR,TLfP K v C   (24) 

where Cβ is given in Eq. (13). 

Remark 2. Although the sliding contact point is uniquely 

determined based on the static equilibrium of frictional force 

and moment and Coulomb friction law, the friction loss is 

always minimum because sliding happens at the contact point 

with the smallest K. 

2.4. General Rolling/Sliding Cases   
So far, the condition for pure rolling is established in 

Subsection 2.2. If pure rolling condition fails to hold and 

sliding has to occur, the existence and uniqueness of one-point 

sliding has been proved in Subsection 2.3. Conditions for 

general cases of four-point contact such as two-point sliding, 

three-point sliding and four-point sliding are shown in this 

subsection.  

Let us first look at two-point sliding. There are 6 possible 

states (combinations of any two contact points from four). 

Without loss of generality, let us assume that the TR and TL 

contact points are sliding and there is no sliding at the BL and 

BR contact points. The kinematic relationship is  

B

BL, B BL B BL

BR, B BR B BR

1 cos sin 0

1 cos sin 0

z

x

z

y

v
R R

R R

 


 


 
       

               
 

v

v
 (25) 

The set of equations is underdetermined, so there are infinitely 

many kinematic possibilities for two-point no sliding. The 

sliding velocities at the other two contact points are 

B

TR, B TR B TR

TL, B TL B TL

1 cos sin

1 cos sin

z

x

z

y

v
R R

R R

 


 


 
      

         
 

v

v
 (26) 

Again the sliding frictions are in +z-direction with magnitude  

 

 
TR, k TR TR,

TL, k TL TL,

sgn ,

sgn

z z

z z

f F

f F





  

  

v

v
 (27) 

The rolling frictions in the BL and BR contact points are 

unknown. Following the same procedure in Eqs. (15)-(19). The 

frictional force and moment equilibrium for the ball can be 

established and solved. The condition for two-point sliding (TR 

and TL) turns out to be 

   TR, TL,sgn sgnz z   v v  (28) 

and 

TR TL BL BR,K K K K   (29) 

where the definition of K is the same as in Eq. (23). 

The condition in Eq. (28) specifies that the directions of 

the relative velocities are different for the two sliding points. As 

shown in Fig. 5, the kinematic relationship for no sliding in Eq. 

(25) is represented as the bottom zero-velocity line. As long as 

the zero-velocity line for the top groove falls between the two 

limits, the condition in Eq. (28) is satisfied.  

 
Figure 5. Graphical representation of TR and TL two-point 

sliding 

For all possible kinematic states, the friction loss is 

   TR TL k(1 ) , 0 1fP aK a K v C a     (30) 

Since KTR=KTL, friction loss Pf is the same for all possible 

kinematic states. Thus minimum energy principal does not help 

uniquely determine the state of the system. Although in reality, 

x

y

Ω

v

Sliding
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TL TR
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vB

z



 6 Copyright © 2017 by ASME 

such strict condition as KTR=KTL is not likely to happen, 

theoretically other criteria need to be came up with to uniquely 

determine ball motion. 

More generally, conditions for three-point sliding 

(assuming BR, TR and TL sliding) are 

     BR, TR, TL,sgn sgn sgnz z z      v v v  (31) 

and 

BR TR TL BLK K K K    (32) 

Conditions for all four-point sliding are 

   

   
BL, BR,

TR, TL,

sgn sgn

sgn sgn

z z

z z

   

    

v v

v v
 (33) 

and 

BL BR TR TLK K K K    (34) 

Again there are infinitely many possible kinematic states 

for three-point sliding and four-point sliding, and friction loss 

for all the states are the same.   

Overall, rolling/sliding behavior of the four-point-contact 

ball all depends on the relative magnitude of the characteristic 

parameter K for each contact point defined in Eq. (23). Sliding 

happens and only happens in the contact point(s) whose 

characteristic parameter K is (are) smallest. When some of K 

are equal, multiple-point sliding can take place at these contact 

points.   

So far, the analysis of rolling and sliding are based on the 

condition ωz=0. The case of ωz≠0 is not feasible because there 

are relative sliding velocities in local x-direction as shown in 

Eqs. (4) and (6), thus frictional moment about global z-axis is 

non-zero and static equilibrium can not be established. 

3. CASE STUDIES 
Based on the proposed analytical model in the preceding 

section, case studies are presented in this section to show the 

effect of misalignments, manufacturing errors and external 

loading on friction behavior of four-point contact, particularly 

the rolling/sliding states, ball motion and friction loss.  

3.1. Normal Contact Force Model  
It is assumed in the proposed model that normal contact 

forces as a result of external loading can be determined a priori 

based on their own static equilibrium. The frictional force and 

moment establish static equilibrium, and do not affect the 

normal contact forces and the contact angles. The calculation of 

normal contact forces given β is briefly summarized here. 

Assuming external forces Nx and Ny are exerted on the top 

groove which has a misalignment angle θ as shown in Fig. 6, 

static equilibrium of the ball and the top groove gives 

BL BR TR TL BL

BL BR TR TL BR

TR TL TR

TR TL TL

0sin sin sin sin

0cos cos cos cos

0 0 sin sin

0 0 cos cos

x

y
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 
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      
    

          
     
           

 
(35) 

Since rank(AN)=4, Eq. (35) always has a unique solution  

   

   

   
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   
   
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     

        

 (36) 

Negative solution for the normal contact forces means loss of 

contact at those contact points. As a result, there will be three-

point or two-point contact. In such situation, the ball can 

always operate in pure rolling with zero friction loss. In order 

for four-point contact to take place (i.e., the normal contact 

force terms in Eq. (36) are all positive), Nx and Ny need to 

satisfy 

   BL TR BR TL

0

min tan , tan min tan , tan

y

x y

N

N N   



  

 (37) 

where equality means the boundary of loss of contact. 

 
Figure 6. Contact force model  

Define ρ=Nx/Ny as the side force ratio and substitute Eq. 

(36) into the characteristic parameter K expressed in Eq. (23), 

they become 
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 (38) 

3.2. Case Study 1: Effect of Angular Misalignment  
Angular misalignment is common in rolling element 

machine components. In this case study, the effect of angular 

misalignment θ is examined with all nominal contact angles of 

45°. According to the definition of β in the proposed model, 

βBL=βBR=45°, βTR=45°+θ, βTL=45°−θ. Angular misalignment θ 

introduces deviation of the contact points, so that pure rolling 

condition does not hold. 

βTRβTL

Ny

Nx

FBL FBR

FTL FTR

βBL βBR

x

y

θ

BL BR

TL TR
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The rolling/sliding states are determined based on the 

relative values of K in Eq. (38), and plotted as a function of 

both ρ and θ in Fig. 7. The shaded area indicates loss of contact 

of some contact points where the condition in Eq. (37) is 

violated. The dotted lines indicate the boundary of loss of 

contact. At θ=0, the ball moves with pure rolling. The four 

regions indicate one-point sliding where the sliding contact 

point is denoted. Two-point sliding can happen at the 

intersection of two regions: along the red line, KBL= KTL, so BL 

and TL can be sliding simultaneously. Similarly, TR and BR 

can both slide along the blue line. The function of the lines for 

two-point sliding is explicitly given as  

1 sin cos

1 sin cos

 


 

 
 

 
 (39) 

The rolling/sliding states in Fig. 7 are symmetric about the 

origin because of the symmetry of four-point point with respect 

to angular misalignment θ and side load Nx as shown in Fig. 6. 

 
Figure 7. Sliding states as a function of angular 

misalignment and external loading 

Friction loss in Eq. (24) can be formulated in this case 

study as 

   ,X X k2 sin , X BL,BR,TR,TLfP K v    (40) 

Without loss of generality, the unified friction loss is compared 

with the same v, μS and a fixed Ny as shown in Fig. 8. 

Generally, friction loss increases with increasing angular 

misalignment θ given the same loading condition. In 

application, angular misalignment should be avoided to reduce 

friction loss, which is common practice. A more interesting 

observation from Fig. 8 is: with the same angular misalignment, 

smaller side load (i.e., ρ=Nx/Ny) generally gives rise to more 

friction loss. The reason is that with smaller side load, the four 

contact points tend to have more evenly distributed contact 

forces. While with larger side load, some contact points have 

smaller contact forces (also smaller K), so sliding will take 

place at these locations. Because friction loss is proportional to 

K at the sliding contact point(s) as in Eq. (40), less friction loss 

comes as a result. 

 
Figure 8. Relative friction loss with angular misalignment  

Ball motion also depends on the rolling/sliding states of the 

ball. One typical example is shown here: when ρ=0 (i.e., Nx=0, 

no side load) and θ≥0, according to Fig. 7, the TR contact point 

will be sliding. Ball motion of TR sliding given in Eq. (11) 

becomes 

B

B

1

2
1 cos sin
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R
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
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   

 (41) 

Ball motion for θ=0 and θ>0 is visualized in Fig. 9. θ=0 sets the 

benchmark as pure rolling, where the ball translates at v/2 and 

rotates about x-axis. When θ>0, since the TR contact point is 

sliding, the zero-velocity lines pass through BL, BR and TL 

contact points as shown in Fig. 9(b). Although the ball still 

rotates about x-axis, both the translational and rotational 

velocities decrease with small θ. 

 
Figure 9. Ball motion with Nx=0 for: (a) θ=0; (b) θ>0 

 

3.3. Case Study 2: Effect of Manufacturing Error  
Manufacturing error is another common type of error in 

rolling element machine components. Consider the situation 

where all the contact points are supposed to have nominal 

contact angles of 45°. However, manufacturing error in TR 

groove makes its contact angle deviated with amount α as 

shown in Fig. 10. Thus βBL=βBR=βTL=45°, βTR=45°+α. Again 

pure rolling condition does not hold in this case. 
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Figure 10. Contact angle deviation of the TR contact point  

The rolling/sliding states as a function of both ρ and α is 

plotted in Fig. 11. The first major difference from Fig. 7 is that 

the sliding regions are no longer symmetric about the origin 

because positive and negative α introduce asymmetry to four-

point contact. The other major difference is two-point sliding 

(BL and TR) exists because KBL=KTR<KBR,KTL for a wide range 

of positive ρ. Three-point sliding happens at the intersection of 

the two regions indicated by the red line and blue line. 

 
Figure 11. Sliding states as a function of TR contact angle 

deviation and external loading  

The relative friction loss as a function of ρ and α is shown 

in Fig. 12. Generally, friction loss increases with increasing 

contact angle deviation α. With the same contact angle 

deviation, smaller side load (i.e., ρ=Nx/Ny) generally gives rise 

to more friction loss for the same reason in Case Study 1. 

 
Figure 12. Relative friction loss with TR contact angle 

deviation  

4. CONCLUSION AND FUTURE WORK 
In this paper, a simplified analytical model for 

rolling/sliding behavior and friction in four-point contact has 

been developed based on Coulomb friction model and rigid 

body assumption. The internal over-constraint effect of four-

point contact is illustrated: in order for pure rolling which has 

minimal friction loss to exist, the geometry of the four points 

need to satisfy certain relationship. Namely, the two lines 

passing through the two contact points on the same groove need 

to be parallel. If the pure rolling condition fails to hold, a 

combination of sliding and no sliding will happen. A 

characteristic parameter K for each contact point which 

incorporates normal contact forces and contact angles is 

derived. Sliding is proved to happen only at the contact point(s) 

with the smallest K. Based on the proposed model, analysis of 

the contributing factors to friction loss such as manufacturing 

errors, misalignments and external loading is investigated in 

case studies. Future work will compare the results of the 

proposed analytical model to those of comprehensive numerical 

models to assess its relative accuracy and usefulness for the 

design and analysis of four-point contact machine elements.  
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ANNEX 

A. 1. PROOF OF RANK(AV)=RANK(A̅V)=3 

Av in Eq. (7) is a 4×3 matrix, so rank(Av)≤3. Pick three 

rows of Av and form a new matrix A̅v as presented in Eq. (12). 

x

Ny

BL BR

TL TRy
v

α

vB
z

BL&TR sliding

Four-point rolling

TL sliding BR sliding

Loss of contact

BL&TR sliding
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      BL BR BL TL BR TLdet( ) sin sin sinvA             (A1) 

From Eq. (A1), 

     

    

    

BL BR BL TL BR TL

BL BR BL TL

BL TL BL TL

sin sin sin

sin 1 cos

sin 1 cos

     

   

   

    

   

   

 (A2) 

Since βBL, βBR, βTR and βTL∈(0, π/2), Eq. (A2)>0. So det(A̅v)<0. 

Thus rank(Av)= rank(A̅v)=3.  
The term in Eq. (A2) is also the denominator of KTR in Eq. 

(23). So KTR is always positive. Same conclusion can be drawn 

that all the K values in Eq. (23) are positive following the 

similar procedure.  


