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ABSTRACT 
The friction behavior of rolling ball machine components 

like linear ball bearings is very important to their functionality. 
For instance, differences in linear velocity of balls induces ball-
to-ball contact in certain circumstances, resulting in significant 
increases and variations in friction. In this paper, an improved 
analytical formula for determining the linear velocity of balls in 
four-point-contact linear ball bearings is derived as a function 
of contact angle deviations and contact forces. The analytical 
formula is validated against a comprehensive friction model in 
the literature and shown to be in good agreement, while an 
oversimplified analytical model proposed by the authors in 
prior work is shown to be inaccurate. A case study is presented 
where insights gained from the derived analytical formula are 
used to mitigate velocity difference of balls in a linear ball 
bearing which otherwise would experience ball-to-ball contact. 

 
1. INTRODUCTION 

Rolling element machine components with balls, such as 
rotary and linear ball bearings and ball screws, are commonly 
used in various kinds of machinery to transmit motion with low 
friction [1]. They are often designed with four-point contact 
between ball and raceways because it offers increased rigidity 
and load capacity in a compact configuration [2]. Typically, 
four-point contact is achieved by placing oversized balls in 
Gothic-arch-type grooves or by using split raceways [2]. 

Friction of ball bearings and ball screws is very important 
to their functionality, such as accuracy, motion smoothness and 
service life [1,2]. Friction is dependent upon many factors, e.g., 
contact slip between balls and raceways, retainer/cage drag 

force, and lubrication [2]. Contact slip caused by ball-to-ball 
contact is the main contributor to friction increase and variation 
of rolling ball machine elements [3,4]. Shimoda and Izawa [3] 
found that friction torque in an oscillatory ball screw can be 
more than twice larger than usual, due to ball-to-ball contact. 
Ohta et al. [4], by observing loaded balls in the ball track of a 
linear ball bearing with a camera, proved that significant 
increases of friction force occur due to ball-to-ball contact.   

To better understand friction, ball motion, and, by 
extension, issues like ball-to-ball contact in rolling ball machine 
components, comprehensive friction models have been 
developed in the literature. Pioneering work on this topic was 
done by Jones [5], who derived the kinematics of balls and 
calculated friction in two-point-contact ball bearings. Leblanc 
and Nelias [6], Halpin and Tran [2] followed Jones’ derivation 
and extended his friction model to four-point-contact ball 
bearings. The aforementioned friction models, and many more 
[7,8] in the literature, usually require numerical iterations to 
determine friction and ball motion. The typical solution process 
is: first, ball motion is assumed; then, the relative velocity field 
between ball and raceways is established over the contact area. 
Accordingly, the total frictional force and moment are obtained 
by integrating infinitesimal frictional stress as a function of the 
velocity field and contact stress distribution over the contact 
area. Finally, quasi-static equilibrium of frictional force and 
moment is established for each ball to back-solve the assumed 
ball motion through an iterative process until the solution 
converges. Similar comprehensive numerical models for 
friction of ball screws have also been developed [9,10]. Though 
comprehensive, such iterative numerical solutions could be 
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computationally expensive and do not yield general insights. 
For instance, they do not explicitly show how bearing 
parameters influence friction, ball motion and, by extension, 
ball-to-ball contact. 

As an alternative to comprehensive models, simplified 
analytical models which give insights about the relationships 
between friction or ball motion and bearing parameters is 
desired. The present authors proposed a simplified analytical 
model for rolling/sliding friction and ball motion of four-point 
contact, based on point contact assumptions [11]. The 
simplified model explicitly captured the effects of geometric 
errors and misalignment on friction in analytical formulas, 
which is very helpful for the analysis and design optimization 
of ball bearings. However, the assumption of point contact 
oversimplifies the model [11], thus significantly diminishing its 
accuracy. The key contribution of this paper is, therefore, in 
deriving a more-accurate analytical formula for ball linear 
velocity in four-point-contact linear ball bearings as a function 
of contact angle deviations and contact forces. In deriving the 
analytical formula, a planar contact area is assumed, and the 
resulting expression for frictional force is linearized. The 
analytical formula for ball linear velocity is shown to be in 
good agreement with a comprehensive model, while the 
oversimplified formula derived in Ref. [11] is shown to be 
grossly inaccurate. Insights gained from the improved formula 
are useful for the analysis and design optimization of four-
point-contact rolling ball machine elements, e.g., to mitigate 
ball-to-ball contact as shown in a case study.  

The paper is organized as follows: in Section 2, the 
kinematics of four-point-contact linear ball bearings is 
introduced. The improved analytical formula for linear velocity 
of balls is then derived, based on a planar contact area 
assumption and a linear approximation of frictional force. 
Section 3 validates the derived analytical formula against a 
comprehensive friction model from the literature, followed by a 
case study that demonstrates ball-to-ball contact due to velocity 
difference of balls. By using the insights gained from the 
improved analytical formula, ball-to-ball contact is shown to be 
mitigated. Finally, conclusions and future work are presented in 
Section 4. 

2. BALL MOTION IN FOUR-POINT CONTACT 
Without loss of generality, ball motion analysis is 

presented in the basic module of a four-point-contact linear ball 
bearing as shown in Fig. 1. The analysis can be generalized to 
rotary ball bearing and ball screw applications with necessary 
modifications. In the setup, the bottom groove is fixed and the 
top groove is moving at a constant velocity of magnitude v. In 
order to obtain ball motion, friction needs to be modeled. 
Friction rising from ball-raceway contact is considered in this 
work, and it is represented by a constant sliding friction 
coefficient μ for metal-to-metal contact. The hydrodynamics of 
lubricant and gyroscopic moment are excluded in this study. 
The same modeling procedure (summarized in the Introduction) 
adopted by the comprehensive friction models [2,5–8] is 
followed in this section, but proper approximations made after 

analysis of friction lead to an explicit analytical formula for ball 
linear velocity. 

 
Figure 1. Basic module of four-point contact in a linear ball 

bearing 
 

2.1. Kinematics of Four-point Contact 
To analyze ball motion and friction, coordinate systems 

need to be established. Figure 2 depicts the cross section of the 
one-ball module shown in Fig. 1. Define a global coordinate 
system (CS={x,y,z}), fixed in space with its z-axis passing 
through ball center and its xy-plane parallel to the cross section. 
A ball, with radius RB, is in four-point contact with the BL, BR, 
TR and TL (representing Bottom/Top and Left/Right) grooves. 
Contact angles βBL, βBR, βTR and βTL are measured from ±y-axis 
to the corresponding contact centers in the cross section (see 
Fig. 2). It is worth noting that contact angles are calculated a 
priori together with normal contact forces FBL, FBR, FTR and FTL 
via static load distribution models such as Ref. [12]. Local 
coordinate systems CSBL, CSBR, CSTR and CSTL are established 
at the corresponding contact centers such that local z-axes are 
parallel to global z-axis and local y-axes point to the origin of 
global coordinate system CS as shown in Fig. 2. In the authors’ 
prior work [11], contact areas are represented as contact points 
to simplify the analysis. In reality, each contact area is spread 
over each of the ball-raceway contact interface. Since the 
contact area is relatively small compared to the ball radius, the 
contact area is assumed to be in the local xz-plane (e.g., xBL-zBL) 
in this work as shown in Fig. 2.  

 
Figure 2. Geometry and coordinate systems for four-point 

contact 
The movement of the top groove in the global z-direction 

at constant velocity v makes the ball to translate and rotate. 
Assume at quasi-static state, the ball translates with linear 
velocity vB in the global z-direction (i.e.,vB={0, 0, vB}T in vector 
form) and rotates with Ω (={ωx, ωy, ωz}T) about an axis passing 
through the ball center. Velocities of any point in the contact 
area on both ball side and groove side can be expressed based 
on rigid body kinematics. Focusing on the BL contact area, qBL 
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is defined as the vector from the ball center to the BL contact 
center and is given in global coordinate system CS as 
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BL B BL

sin

cos
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R

R




 
   
 
 

q  (1) 

For any point with local coordinates (xBL, zBL)T in the contact 
area, its position in global coordinate system is 
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The linear velocity at the BL contact area on the ball side in CS 
can be expressed as 

BL,B BL,B B  v q v  (4) 
Since the bottom groove is fixed, the linear velocity at the BL 
contact area on the groove side is zero. Thus the relative 
velocity at any point in the BL contact area is  

BL,B BL,B BL,B   v v 0 v  (5) 
The relative velocity expressed in the contact plane (xz-plane of 
local coordinate system CSBL) can be formulated as  
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The relative velocity field in Eq. (6) in the BL contact plane is 
rewritten as  
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Following the same procedure, the velocity field for other 
contact areas can also be derived as  
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It is observed that the relative velocity field in the elliptical 
contact area (with semi-major axis ai and semi-minor axis bi) is 
a circular contour centered at (ci, di) as shown in Fig. 3(a), with 
i∈{BL,BR,TR,TL} representing different contact area. Notice 
that the center of the contour represents the zero-velocity point. 
Another observation about the velocity field in Eqs. (6) and (9) 
is that the offset in the xi-component (local x-component) are all 
ωzRB, which is induced by the rotation of ball around the global 
z-axis. It can be proved that the same offset gives rise to 
frictional forces in all positive or all negative local x-direction 
for all four contact points if ωz≠0. In that case, frictional 
moment about global z-axis is non-zero, which is not feasible in 
the quasi-static state. In order for the quasi-static state to hold, 
ωz=0 has to be enforced. Thus di=0 as shown in Fig. 3(b) is the 
case for all four contact points in linear ball bearings. 

 
Figure 3. Contact area and velocity field: (a) when ωz≠0; (b) 

linear ball bearing case where ωz=0 is enforced 
From now on, the discussion will be only focused on the 

case di=0, where velocity center is always on the semi-major 
axis of the elliptical contact area. The velocity field for the four 
contact areas in Eqs. (8) and (9) are represented by a common 
formula as  
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It is worth noting that derivation of velocity field in the contact 
area for ball bearing was done in many comprehensive friction 
models in the literature [2,5–8]. However, with contact plane 
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approximation in this work, a neat expression of velocity field 
is obtained and its circular contour pattern is found, which is 
very helpful for the analysis of friction.  
 
2.2. Frictional Force and Moment in the Contact Area 

Now that the velocity field is expressed over the assumed 
planar contact area, friction can be calculated given normal 
contact stress distribution. This is a standard process that Jones 
and other researchers adopted [2,5–8]. But with the velocity 
field derived in last subsection, friction can be analyzed 
explicitly. The normal contact stress field indicated by the color 
map in Fig. 3 is described by Hertzian Contact Theory as  
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where ai and bi are determined given the contact surface 
geometry and normal contact force Fi for each contact area, the 
details of which are shown in Ref. [13]. Given the symmetry of 
the contact stress field and velocity field about the xi-axis in 
Fig. 3(a), the frictional force along xi-axis is zero. The frictional 
force along zi-axis and frictional moment about contact center 
are calculated by double integrating the frictional stress over 
the contact area as 
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The frictional force and moment are functions of ci/ai, an 
indicator for the deviation of velocity center from contact 
center. Extreme values of fi,z and Mi,O are achieved at ci/ai=0 as  
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where Ellip(·) represents the complete elliptic integral of the 
second kind. The case of ci/ai=0 represents pure spin. The other 
set of extreme values are achieved when ci/ai→±∞ as  
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where pure sliding happens.  
 
2.3. Approximation of Frictional Force and Moment 

The frictional force and moment expressed in Eqs. (12) and 
(13) are affected by bi/ai, which is the same for four contact 
points in a linear ball bearing and is solely determined by the 

conformity ratio of the groove [2,6] (i.e., conf. = RG/2RB, with 
RG representing the radius of the groove). There is no explicit 
expression for the double integral of the frictional force and 
moment in Eqs. (12) and (13). However, Fig. 4 shows the 
numerical results of normalized fi,z and Mi,O as functions of ci/ai 
under four typical conformity ratios of bearings [6]. To 
normalize fi,z, it is divided by its extreme value sgn(ωi)μFi; 
while Mi,O is normalized by dividing sgn(ωi)μFi and moment 
arm RB in order to make it comparable in magnitude to fi,z in the 
force and moment equilibrium equation.   

Observing from Fig. 4, there is no significant difference 
among the plots of the four typical conformity ratios, thus they 
will not be distinguished in this work. It is observed that the 
normalized frictional moment is very small compared to the 
normalized frictional force over a wide range as shown in Fig. 
4(a). Frictional moment is only comparable to frictional force 
when ci/ai is very close to zero. When |ci/ai|<0.5, fi,z is almost 
linear with respect to ci/ai as shown in Fig. 4(b). While in the 
same region, the change of normalized Mi,O is negligible 
compared to that of fi,z. In fact, |ci/ai| is usually very small in 
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four-point contact as observed from the results presented in 
Ref. [6,14]. Small |ci/ai| condition breaks down only when there 
is two-point contact or near two-point contact (i.e., contact 
forces on one diagonal pair are significantly larger than those 
on the other pair). Thus to simplify the analysis for four-point 
contact, frictional force is approximated to be linear with 
respect to ci/ai while frictional moment is approximated to 
always take its maximum value given in Eq. (14).  

  

 

 
Figure 4. Frictional force and moment as functions of ci/ai: 

(a) full plot; (b) zoomed in plot near ci/ai = 0 
To aid the analysis, an additional variable Δγi is introduced 

for each contact area (see Fig. 5), indicating the angular 
deviation of the velocity center from contact center in the cross 
section (i.e., along semi-major axis of the contact area). Thus  
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Figure 5. Angular deviation of velocity center from contact 

center 

In accordance with small ci/ai assumption, Δγi is even 
smaller. With linear approximation, frictional force becomes   
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Based on the plot in Fig. 4, kf =−1.38 is picked.   
The ball needs to be in quasi-static equilibrium under 

frictional force and moment as   
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Besides equilibrium of frictional force and moment, one more 
relationship comes from the kinematic constraint. In the 
authors’ prior work [11], it is found that the two “zero-velocity 
lines” that pass through the zero-velocity points on the same 
side of the groove (see blue lines in Fig. 5) are parallel. It still 
holds true in this work with βi+Δγi representing the angle of 
velocity center. This means      
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BR BR TR TR BL BL TR TR

sin sin

sin sin

       

       

      

       
 (19) 

For contact angles βi, there is a nominal value β0. However, the 
actual contact angle deviates from β0 due to the presence of 
geometric error and/or misalignment. Define  

0:i i      (20) 
where Δβi is the contact angle deviation and is usually very 
small (typically −3°<Δβi<3°). 

Under the assumption of small Δβi+Δγi, Eq. (18) is 
approximated as 
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Putting Eqs.(17)(18)(21) together, the angular deviation Δγi are 
analytically solved using Matlab Symbolic Toolbox.   

 
2.4. Effect of Contact Angle Deviation on Ball Motion 

The effect of contact angle deviations on ball linear 
velocity is of particular interest in this work. From prior work 
[11],  the linear velocity of ball center is formulated as  
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With small Δβi+Δγi approximation, Eq. (22) reduces to  
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where ε is the deviation of ball center velocity from the nominal 
ball center velocity v/2. Substitute the solution of Δγi obtained 
in last subsection into Eq. (23), ε is obtained as a function of 
four contact angle deviation Δβi and four normal contact forces 
Fi. Since contact angle deviation Δβi is small, the contact forces 
on the same diagonal pair (i.e., BL and TR pair, BR and TL 
pair) are very close under external loading [14]. With 
approximation that FBL≈FTR≈F1 and FBR≈FTL≈F2, the ball 
center velocity deviation is simplified to be   
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This formula shows the effect of contact angle deviations and 
contact forces on the ball linear velocity deviation ε. A few 
insights obtained from the formula for ε are: (1) ball velocity is 
not affected by external loading in the absence of contact angle 
deviation; (2) given the same contact angle deviations, the ball 
center velocity deviation will be different under different 
loading condition; (3) if −ΔβBL+ΔβTR = −ΔβBR+ΔβTL, then Eq. 
(24) reduces to 

   BL TR
01 cos 2

2

 
 

 
   (25) 

which is independent on external loading condition. These 
insights are helpful for design optimization of four-point-
contact linear ball bearings to reduce velocity difference of 
balls as will be shown in Section 3.  

Compared to the comprehensive friction models in the 
literature, three approximations are made in the derivation: (I) 
planar contact area is assumed; (II) Δβi+Δγi for each contact 
point is small; (III) contact forces on the same diagonal pair are 
approximated to be the same. Four-point contact is a necessary 
condition for approximation (II). If there are only two contact 
points or near two-point contact (i.e., contact forces on one 
diagonal pair are significantly larger than those on the other 
pair), the angular deviation of velocity center from contact 
center Δγi becomes large so that small Δβi+Δγi assumption 
becomes invalid.   

3. VALIDATION AND CASE STUDIES 
In the preceding section, an analytical formula for ball 

linear velocity in four-point contact is derived with 
approximations. In this section, the derived analytical formula 
is validated against a comprehensive friction model in the 
literature. Results from the authors’ prior work are also 
compared to show the improvement made in this work. A case 
study is presented to demonstrate ball-to-ball contact due to 
velocity difference of balls induced by contact angle deviations. 
By using the insights gained from the derived analytical 
formula, ball-to-ball contact is shown to be mitigated. 

 

3.1. Validation of the Derived Analytical Formula  
To validate the derived analytical formula of ball velocity 

deviation, it is compared to a comprehensive friction model in 
the literature in the setup as shown in Fig. 6. Without loss of 
generality, the nominal contact angle β0 is set to be 45°. Contact 
angle deviation θ (<3°) only takes place on the bottom groove. 
This type of contact angle deviation can be caused by 
manufacturing error and/or misalignment. According to the 
definition of contact angle deviations in this work, ΔβBL=−θ, 
ΔβBR=θ and ΔβTL=ΔβTR=0. The external loading is represented 
by Nx and Ny applied to the top groove. Since the contact angle 
deviations are small, it is reasonable to approximate the four 
contact forces as FBL≈FTR≈F1=√2/2(Ny−Nx) and FBR≈FTL≈F2 

=√2/2(Ny+Nx). Define ρ=Nx/Ny as the side force ratio and 
substitute all these parameters into Eq. (24), the ball velocity 
deviation in this case study is formulated as   
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Figure 6. Contact angle deviations and external loading in 

the case study 
As benchmark for the comparison, the comprehensive 

friction model is Leblanc’s model with details presented in Ref. 
[6]. The ball velocity deviation of both the derived formula in 
this work and simplified model in the authors’ prior work [11] 
is found to have explicit forms only dependent on contact angle 
deviation θ and side force ratio ρ. On the contrary, Leblanc’s 
model needs to go through iterative numerical process to 
calculate the linear velocity of the ball. Parameters for 
Leblanc’s model in this case study are shown in Table 1. 

Table 1. Parameters for the case study 
Parameter (Symbol) Value [Unit] 

Ball radius (RB) 5 [mm] 
Conformity ratio of groove (conf.) 0.54 
Normal force (Ny) 200 [N] 
Velocity of the top groove (v) 10 [mm/s] 
Friction coefficient of metal-to-metal 
contact (μ) 

0.1 

Young’s modulus 210 [N/mm2] 
Poisson’s ratio 0.28 
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Figure 7 compares the ball linear velocity deviation ε from 
the three models under different loading ρ and contact angle 
deviation θ. It is observed that results from the analytical 
formula derived in this work (see Fig. 7(c)) match with 
Leblanc’s models (Fig. 7(a)) closely. The difference of velocity 
deviation only becomes noticeable when the magnitudes of side 
force ratio |ρ| and contact angle deviation |θ| are large as shown 
in Fig. 7(d). Large |ρ| and |θ| are exactly where Approximation 
(II) summarized at the end of Section 2 fails: four-point contact 
tends to be two-point contact when |ρ| is large, together with 
large |θ|, the small Δβi+Δγi assumption is untenable. But 
overall, the analytical formula derived predicts the velocity 
deviation to a reasonable extent in four-point contact. On the 
other hand, the authors’ prior work with point contact 
assumption (see Fig. 7(b)) is shown to be in gross error 
compared to both Lelanc’s model and the derived analytical 
formula, because the point contact assumption is 
oversimplified. 

 

 
Figure 7. Comparison of velocity deviation from three 

models 
 

3.2. Ball-to-ball Contact Prediction 
From ball motion analysis of single balls, it is observed 

that contact angle deviations, under external loading, induce 
ball velocity deviation. When these balls are on the same track, 
velocity difference can result in ball-to-ball contact if the linear 
velocity of the ball behind is faster than the ball in front and 
when the two balls are close enough. Ball-to-ball contact is 
well-known to give rise to significant friction increase and 
friction variation so it is desirable to avoid or at least mitigate 
ball-to-ball contact. 

Figure 8 shows the front view and side view of two balls 
on the same linear ball bearing with initial gap Δd0=0.1RB. The 
same type of contact angle deviation in Fig. 6 from last case 
study is assumed for the bottom groove with θ=2°. Assume the 
same Ny is applied to Ball 1 and Ball 2 but Nx on the two balls is 
of opposite direction such that ρ1=Nx1/Ny1=−0.6 and 
ρ2=Nx2/Ny2=0.6. This kind of loading represents a yaw moment 

applied to the top groove, which accelerates ball-to-ball contact 
as shown in Ref. [4].  

 
Figure 8. Setup for ball-to-ball contact and avoidance study 

 
According to Eq. (26), the velocity deviations ε1 and ε2 of 

Ball 1 and Ball 2 respectively are different because of different 
ρ1 and ρ2. The contact angle deviations and the velocity 
deviations calculated from both Leblanc’s model and the 
derived analytical formula are summarized in Table 2 as Case 
(a). Despite the small difference, both models predict that Ball 
1 is moving faster than Ball 2. Ball location can be calculated 
as an integral of ball velocity. The deviation of ball location 
from its nominal location (vt/2) according to the derived 
analytical formula is plotted in Fig. 9(a). It is obvious that ball-
to-ball contact takes place due to the velocity difference.  

There are engineering solutions for mitigating ball to ball 
contact such as using spacer balls or cages. However, the 
derived analytical formula sheds light into how to mitigate ball-
to-ball contact by reducing velocity difference of ball. Given 
the contact angle deviations on the bottom groove, if the 
contact angle deviations on the top groove can be controlled or 
manipulated in the manufacturing or assembly process, the 
velocity difference of balls can be minimized and ball-to-ball 
contact can be mitigated. From Eq. (24), it is found that if 
ΔβTR=ΔβBL and ΔβTL=ΔβBR, then the velocity deviation is 
always zero irrespective of external loading. This optimized 
design is simulated with the results shown in Table 2 as Case 
(b) and plotted in Fig. 9(b). Although Leblanc’s model (and 
other comprehensive friction models) is able to calculate 
velocity deviation of balls given contact angle deviations, it 
lacks the ability to make predictions and give guidelines for 
design optimization except by trial and error.   

   

Table 2. Contact angle deviations and velocity deviation of 
balls in two cases 

 
Contact angle 

deviations 

(−ΔβBL=ΔβBR=θ=2°) 
Velocity deviation 

 ΔβTR ΔβTL  
Leblanc’s 

model 
Derived 
formula 

Case (a) 0 0 
ε1 0.85% 0.75% 
ε2 −0.77% −0.75% 

Case (b) −θ θ 
ε1 0 0 
ε2 0 0 
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Figure 9. Example of ball-to-ball contact and avoidance 

4. CONCLUSION AND FUTURE WORK 
Friction behavior is very important to rolling ball machine 

components like linear ball bearings. Difference in linear 
velocity of balls, resulting from contact angle deviations, 
induces issues like ball-to-ball contact in certain circumstances, 
giving rise to significant increases and variations of friction. In 
this paper, an analytical formula for ball linear velocity in four-
point-contact linear ball bearings is derived as a function of 
contact angle deviations and contact forces. It is based on two 
major approximations: (i) planar contact area; (ii) linearized 
frictional force. Thus the derived formula is valid for linear ball 
bearings in four-point contact with small contact angle 
deviations. The results of the analytical formula is compared to 
a comprehensive friction model in the literature and shown to 
be in good agreement. Ball-to-ball contact due to velocity 
difference of balls induced by contact angle deviations is 
demonstrated in a case study. Using the insights gained from 
the derived analytical formula, ball-to-ball contact is shown to 
be mitigated by reducing the velocity difference of balls. This 
work focuses what gives rise to velocity difference of balls that 
leads to ball-to-ball contact. But the effect of velocity 
difference on the level of ball-to-ball contact force and sliding 
friction loss still remains a question. It will be addressed in the 
future work.  
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