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ABSTRACT 
The Frobenius norm of the lifted system representation of 

tracking error dynamics is proposed as a metric for evaluating 

the tracking performance of discrete-time linear time invariant 

(LTI) and linear time varying (LTV) controllers. The proposed 

metric is introduced here in the context of feedforward tracking 

control of LTI single-input single-output (SISO) nonminimum 

phase (NMP) systems, though it is more broadly applicable. It is 

shown that the filtered basis functions (FBF) approach, an LTV 

tracking control technique studied by the authors in prior work, 

is the optimal solution to the rank constrained minimization of 

the proposed metric. Moreover, for the FBF controller, the metric 

is independent of plant dynamics, which is not the case for most 

other tracking controllers; it is also independent of the type of 

basis functions employed in the FBF controller. The 

effectiveness of the proposed metric as a tracking performance 

evaluation tool for both LTI and LTV tracking controllers is 

demonstrated analytically and numerically on LTI plants with 

different zero locations. 

NOMENCLATURE 

Symbol Description 

A Exponential function constant  

C Feedforward controller 

C Lifted system representation of feedforward 

controller 

Eff Error dynamics 

Eff Lifted system representation of error dynamics 

G Plant 

G Lifted system representation of plant 

I Identity matrix 

Je Proposed Frobenius norm metric for tracking error 

L Overall dynamics 

L Lifted system representation of overall dynamics 

M Number of trajectory points minus 1 

a Zero location 

e Tracking error 

e Lifted form of tracking error 

j Unit imaginary number 

k Discrete time index 

n Number of basis functions minus 1 

n1 Number of terms used in truncated series method 

p Pole location 

q Forward shift operator 

u Control input 

u Lifted form of control input 

y Output 

y Lifted form of output 

yd Desired trajectory 

yd Lifted form of desired trajectory 

Φ Basis function matrix 

Ψ Basis function matrix corresponding to decoupled 

filtered basis functions 

α Transformation matrix 

βi Constant factor for DCT basis functions 

γi Coefficients of basis functions 

γ Vector representation of coefficients  

ηi Singular vectors of identity matrix 

µ Exponential function constant 

σi Singular values of Eff 

φi Basis functions 

φi Lifted form of basis functions 

~ Filtered variable 

* Optimal variable 



 

 

1. INTRODUCTION 
Tracking control is a fundamental problem encountered in a 

wide range of fields such as manufacturing, robotics and 
aeronautics. The objective of tracking control is to force the 
output trajectory of the controlled system to follow a desired 
trajectory as closely as possible. Tracking control could be 
achieved using feedforward and/or feedback controllers. This 
paper is written in the context of feedforward tracking control of 
discrete-time, linear time-invariant (LTI), single-input single-
output (SISO), nonminimum phase (NMP) systems. However, its 
key results apply to any discrete-time linear tracking controller, 
whether feedforward or feedback, time invariant or time varying.  

Discrete-time feedforward tracking techniques for SISO LTI 
systems usually result in LTI controllers, e.g., zero phase error 
tracking control [1], truncated series [2], and others (see [3–7] for 
more details). However, there are a few techniques that can result 
in linear time varying (LTV) controllers [7–10]. For instance, 
perfect tracking control can be achieved using the lifted system 
representation of an LTI system [3]. However, for NMP systems, 
the lifted representation has small singular values which prevent 
inversion. Hence, Hashemi and Hammond [8] proposed a small 
singular values substitution method which generally results in an 
LTV controller. Similarly, to address the same problem, Ronde et 
al. [9] used a truncated SVD (singular value decomposition) 
approach which also results in an LTV controller. Norm optimal 
iterative learning control [7], an optimization based tracking 
control technique, can also result in an LTV controller.  

The filtered basis functions (FBF) method is another class of 
tracking controllers that is LTV [10–12]. It finds its origins in the 
work of Frueh and Phan [13] on inverse linear quadratic learning 
in the context of iterative learning control (ILC). The FBF 
approach expresses the control input as a linear combination of 
user-defined basis functions with unknown coefficients. The basis 
functions are forward filtered using the plant dynamics, and their 
coefficients selected such that the tracking error is minimized. 
Unlike comparable methods in the literature, the present authors 
have shown that the FBF method is effective in tracking any 
desired trajectory, irrespective of the location of NMP zeros in the 
z-plane – including nonhyperbolic systems [10,11]. Moreover, 
using time-domain simulation examples, they have shown that the 
FBF method maintains consistent tracking performance 
compared to popular LTI tracking controllers irrespective of the 
location of NMP zeros in the z-plane. However, while the use of 
time-domain simulation examples [3,4,10] and cost functions 
based on signal 2-norms [7,14] is common for evaluating tracking 
controllers, such evaluations often depend on specific desired 
trajectories, and hence could lack generality and fundamental 
insight. This drawback of time-domain-based evaluation is often 
overcome in LTI controllers by employing frequency domain 
metrics like Bode diagrams [2], transfer function magnitude at 
Nyquist frequency [4], and system 2-norms [2,3], etc. However, 
such frequency-domain metrics do not generally apply to LTV 
controllers. It is therefore desirable to develop metrics that are 
suitable for tracking performance evaluation of LTV controllers 
(in comparison with their LTI counterparts), independent of 
specific desired trajectories.  

For discrete-time tracking controllers, the lifted domain 
provides a unified framework for representing both LTI and LTV 
tracking controllers [7]. Therefore, it makes sense to explore a 
unified metric for tracking error evaluation for LTI and LTV 
controller using the lifted domain representation. In this regard, 
the 2-norm of the lifted system representation of controlled 

systems has been used for evaluating the convergence of tracking 
errors (i.e., stability analysis) in ILC, independent of specific 
desired trajectories [15]. However, as discussed in Sec. 3.2, the 
use of the 2-norm of lifted system representation can be 
misleading for tracking performance evaluation of controllers. 
This paper makes the following key contributions to the literature 
to address the aforementioned shortcomings: 

1. It proposes the Frobenius norm of the lifted system 
representation of tracking error dynamics as a metric for 
evaluating the tracking performance of LTI and LTV 
controllers, independent of desired trajectory (Sec. 2). 

2. It shows that the FBF controller is the optimal solution to the 
rank constrained minimization of the proposed Frobenius 
norm metric. It also shows analytically that, for the FBF 
controller, the metric is independent of plant dynamics (and 
of the choice of basis functions) (Sec. 3). 

3. It analytically and numerically demonstrates the 
effectiveness of the proposed metric as a tracking 
performance evaluation tool using LTI plants with different 
zero locations. Specifically, the Frobenius norm metric and 
time-domain tracking performances of the FBF (LTV) 
controller are compared to those of two popular LTI tracking 
controllers – namely, the zero phase error tracking controller 
and the truncated series controller (Sec. 4). 

2. PROBLEM STATEMENT AND FROBENIUS NORM 
METRIC 

2.1 Problem Statement 
Given a discrete-time LTI SISO plant G(q), as shown in Fig. 

1, which may represent an open loop plant or a closed loop 

controlled system, we can write  

( ) ( ) ( )y k G q u k  (1) 

where k is the time index, q is the forward shift operator, y and u 

are the output and control input, respectively. The objective of 

feedforward tracking control is to design a controller C(q) or find 

a control input u(k) given by 

( ) ( ) ( )du k C q y k  (2) 

where yd(k) is the desired trajectory, such that the tracking error 

e(k)   
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is minimized, where L(q) and Eff(q) are the overall and the error 

dynamics of the controlled system, respectively.  

For finite time, 0 ≤ k ≤ M (M+1 is the number of discrete 

points in the trajectory), the desired trajectory, control input, 

tracking error and output trajectory can be expressed using 

vectors 
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Accordingly, Eqs. (1)-(3) can be expressed as  
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(5) 

where G, C, L and Eff are the lifted system representations (see 

Appendix A for details) of G, C, L and Eff, respectively, and I is 

the identity matrix of appropriate size.   

 
Figure 1: Block diagram for feedforward tracking 

control 

2.2 Frobenius Norm Metric 
As a tracking performance evaluation metric, this paper 

proposes the following metric, Je, based on the Frobenius norm 

of Eff  

1

ff F

eJ
M




E
 

(6) 

where 
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The Frobenius norm is selected because it takes into account all 

singular values/gains (σi) of Eff, as opposed to ||Eff||2, which 

considers only the maximum singular value/gain. The square 

root of (M+1) in the metric ensures that the metric is uniformly 

bounded as the length of the trajectory grows.  

Note that for a normalized desired trajectory (||yd||2 = 1), 

2|| ||

1 1

ff F

RMS eJ
M M

  
 

Ee
e  (8) 

The implication is that Je is an upper bound on the RMS tracking 

error (eRMS). Moreover, it is shown in Appendix B, that for an 

LTI system 

2
( )    as 

1
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ffE q M
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In other words, Je approaches the system error 2-norm criterion 

(sometimes used in the design and analysis of LTI tracking 

controllers [2]) for large M.  
Remark 1: The lifted system representation is employed for the 
proposed metric because it applies to both LTI and LTV 
controllers [7]. Moreover, the lifted system representation is 
applicable to feedforward as well as feedback controllers, SISO 
as well as multi-input multi-output (MIMO) controllers. As a 
result, the proposed metric is broadly applicable to any linear, 
discrete-time tracking controller. 

3. FROBENIUS NORM METRIC APPLIED TO FILTERED 
BASIS FUNCTIONS APPROACH 

Ideally, the feedforward tracking controller should be 
selected such that C(q) = G(q)−1 (C = G−1) which results in Eff(q) 
= 0 (Eff = 0) and the proposed metric Je = 0. However, C(q) = 
G(q)−1 is unrealizable if G(q) contains uncancellable zero(s). The 
presence of uncancellable zeros has motivated a lot of research 
(see [3–6,10] for more details). As mentioned in Sec.1, using 

time-domain simulation examples, the authors have shown that 
the filtered basis functions (FBF) method maintains consistent 
tracking performance compared to popular LTI tracking 
controllers irrespective of the location of NMP zeros in the z-
plane [10,11,16]. However, due to lack of a suitable metric, the 
FBF method’s tracking performance has not been evaluated 
independent of specific desired trajectories. This section presents 
an overview of the FBF approach and uses the proposed 
Frobenius norm metric to provide a theoretical justification for 
its observed consistent tracking performance. 

3.1 Overview of FBF Approach 
The FBF approach relies on two assumptions: 

• the desired trajectory, yd, is known a priori 

• the control input u(k) is expressed as a linear combination of 
n+1 user-defined basis functions φi(k) 

0

( ) ( )
n

i i

i

u k k 


  (10) 

where γi are unknown coefficients. Using vectors, Eq. (10) can be 
expressed as 

u Φγ  (11) 

where  
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For a linear system G(q) (with lifted system representation G), y 
can be expressed as 

y Φγ  (13) 

where 

 0 1

;   ;i i

n

 



Φ GΦ φ Gφ

Φ φ φ φ
 (14) 

represent the filtered basis functions. The control objective is to 
find the optimal coefficient vector γ such that the squared 2-norm 
of the tracking error 

T T( ) ( )d d  e e y Φγ y Φγ  (15) 

is minimized; the optimal solution is given by 
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Based on Eqs. (5), (11), (13) and (16), the lifted system 
representations of the controller and error dynamics of the FBF 
method can be expressed as 

 

 

1
T T

1
T T

,

FBF

ff FBF

FBF







 

C Φ Φ Φ Φ

E I Φ Φ Φ Φ

L

 (17) 

The filtered basis functions matrix �̃� can be transformed to 

decoupled filtered basis functions �̃� using transformation α (for 
more details, see prior work of the authors [10])  
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Remark 2: CFBF and Eff,FBF both depend on the plant as well as 
the selected basis functions. Both matrices are, in general, non-
Toeplitz and non-triangular implying that the FBF controller is, 
in general, LTV and non-causal [10].  

Remark 3: Although, this paper describes the FBF approach in 

the context of LTI SISO systems, it is applicable to other types 

of linear systems such as LTV and MIMO systems. Ref. [16] 

relaxes the assumption on a priori knowledge of the desired 

trajectory using B-spline basis functions.  

3.2 Analysis of FBF using Proposed Frobenius Norm 
Metric 

According to the Eckart−Young−Mirsky (EYM) Theorem 

[17–19], FBF is the optimal solution to the rank constrained 

minimization of the proposed Frobenius norm metric (for proof 

see Appendix C); i.e., 

: arg min
1

                  s.t. ( ) 1

F

FBF eJ
M

rank n

  
    

 

L

I L
L

L
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Remark 4: As discussed previously, Je = 0 implies C = G−1 

which might be undesirable if G(q) contains uncancellable 

zero(s) because such zeros result in very small singular values of 

G, and consequently large control signals [3]. The use of n+1 < 

M+1 basis functions imposes a rank constraint on LFBF which in 

the lifted domain represents a restricted space of inputs and 

outputs [10]. The rank constraint avoids inversion of the full G, 

while also reducing the computational demands of the control 

problem [20–22]. 

Applying the proposed Frobenius norm metric to the FBF 

method yields 

,

1
1

1
e FBF
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This result stems from the fact that Eff,FBF is symmetric, 

idempotent and has M−n singular values equal to 1. Note that 

Je,FBF is independent of the plant (G(q)) and the type of basis 

functions employed. It depends only on the number of basis 

functions and the number of discrete points in the trajectory. As 

will be shown in the following section, the independence of Je,FBF 

from G(q) cannot be taken for granted with other tracking 

controllers; it stems from the unique structure of  Eff,FBF  and 

it explains the consistent tracking performance of the FBF 

method irrespective of G(q), as observed in prior work 

[10,11,16]. Note that, ||Eff,FBF||2 is equal to 1, irrespective of the 

number of basis functions used, which is not a realistic 

representation of the tracking performance of the FBF method, 

which varies significantly with n [10,11,16]. Hence, the 

proposed Frobenius norm metric is more appropriate compared 

to 2-norm metrics like those used in ILC [15]. 

4. VALIDATION OF THE FROBENIUS NORM METRIC 
To demonstrate the effectiveness of the proposed metric, 

this section compares the Je value and tracking performance of 

FBF with those of the Zero Phase Error Tracking Controller 

(ZPETC) and Truncated Series (TS) tracking controllers using a 

first order plant studied by Butterworth et al. [4]: 

( )
q a

G q
q p





 (23) 

where a (a real number) and p = 0.5 are the zero and pole of the 

plant, respectively. The ZPETC [1] is a widely discussed 

technique in the literature, and TS [2] is the optimal solution to 

the constrained minimization of weighted integral of squared 

magnitude of the error dynamics; it is one of the most versatile 

controllers with regards to its ability to deliver excellent tracking 

irrespective of the plant dynamics. 

As shown in the preceding section, the Frobenius norm 

metric Je for FBF is independent of the plant dynamics (see Eq. 

(22)). For ZPETC, the error dynamics Eff(q) and metric Je are 

given by 
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For TS, the expressions are given by 
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where n1 is the number of terms in the series.  

Remark 5: The expressions of Je for ZPETC and TS given by 

Eqs. (24) and (25), respectively, are valid beyond the first order 

plant in Eq. (23) and hold for all systems with one real 

uncancellable zero. For ZPETC and TS, the error dynamics 

depends on the uncancellable zero and is independent of the 

cancellable part of the dynamics. This dependence of ZPETC 

and TS error dynamics on uncancellable zero dynamics holds 

irrespective of the number of uncancellable zero(s). The value of 

Je for FBF is independent of the uncancellable zero(s) location, 

whereas, for ZPETC and TS it depends on the uncancellable 

zero(s) location.  

The Je values for FBF, ZPETC and TS are plotted in Fig. 2 

for a ϵ [−10,10] based on parameter values M = 1000, n = 990 

and n1 = 5. Note that FBF is defined for all zero locations, 

whereas, ZPETC and TS are not applicable for a = 1 and |a| = 1, 

respectively. It must be pointed out that approximate inversion is 



 

 

not generally used for tracking control in the minimum phase 

(MP) region because C = G−1 can be employed (providing a is 

not poorly damped [1]). However, we have included the MP 

region in Fig. 2 for the sake of completeness. The variation of Je 

with a seen in Fig. 2 for FBF, ZPETC and TS are in agreement 

with observations made in the literature; i.e.:  

• The FBF method demonstrates very consistent tracking 
performance irrespective of plant dynamics [10,11,16]. 

• The performance of ZPETC for left hand plane (LHP) zeros 
is better than that for right hand plane (LHP) zeros and the 
worst case is around a = 1 [4]. 

• The performance of TS for RHP and LHP zeros is the same, 
i.e., its performance is symmetric with respect to the 
imaginary axis. However, its performance degrades 
drastically as |a| → 1 for a fixed n1. To improve its 
performance as |a| → 1, n1 must approach infinity [2]. 

Remark 6: Note that LZPETC and LTS have full rank (M+1), hence 

their better performance than LFBF in Fig. 2 for some values of a; 

if LFBF is allowed to achieve full rank (n = M) it will result in the 

best possible performance, i.e., perfect tracking (at least in 

theory). Hence, the relative accuracy between FBF and the other 

methods is not of particular interest, since the accuracy of FBF 

can always be improved by using higher n [10].  

The tracking performance predictions of Je as a function of 

a in Fig. 2 are validated in simulations using a zero-mean white 

noise signal, with variance equal to 1, M = 1000 and sampling 

frequency 10 kHz, as the desired trajectory (yd). The white noise 

nature of the desired trajectory ensures that it has equal intensity 

at different frequencies. Figure 3 shows the effect of zero 

location a on normalized RMS tracking error eRMS/yd,RMS. For 

FBF, two rudimentary basis functions are used: (i) discrete 

cosine transform (DCT) [21], and (ii) block pulse functions 

(BPF) [23]. The DCT is a frequency-based transform that is 

widely used in signal processing; its basis functions are real-

valued cosines defined as follows [10,21] 
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The BPF basis functions [23] are given by 
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The BPF expressed in Eq. (27) seeks to divide the time interval 

from 0 to M among n+1 basis functions in a quasi-uniform 

manner. Other parameters M = 1000, n = 990 and n1 = 5 are same 

as that used for generating the Je plots in Fig. 2. Notice that the 

trend for Je (Fig. 2) and eRMS/yd,RMS (Fig. 3) are very similar, 

which indicates the effectiveness of the proposed metric as an 

indicator of tracking performance. It confirms that the tracking 

performance of FBF does not vary much with zero location and 

type of basis functions. However, the tracking performances of 

ZPETC and TS change drastically with zero location in the 

pattern predicted by their respective Je values. It must be noted 

that there might be instances when the performance trends might 

not exactly follow insights drawn from the Frobenius norm 

metric. For example, FBF might have much better tracking 

performance than predicted by Je if one purposely (or accidently) 

uses filtered basis functions that span the desired trajectory (yd). 

But, in general, the proposed Frobenius norm metric provides 

good insights about tracking performance and one can expect a 

more consistent performance (with respect to the zero location) 

with FBF compared to ZPETC and TS.  

Remark 7: The inconsistent performance of ZPETC and TS 

predicted by Je in Fig. 2 and validated numerically in Fig. 3 is 

faced by most other tracking control methods [4]. Therefore, the 

consistent tracking performance of FBF predicted by Je,FBF and 

validated in Fig. 3, as well as in Refs. [10,11,16], sets it apart 

from most other tracking control methods. 

 

Figure 2: Effect of zero location on Frobenius norm 
metric for FBF, ZPETC and TS (M = 1000, n = 990, n1 = 
5). ZPETC is not applicable for a = 1 and TS is not 
applicable for |a| = 1. The methods are also simulated 
for MP region but the plant can also be inverted in this 
region. 

 
Figure 3: Effect of zero location on normalized RMS 
tracking error for FBF (DCT, BPF), ZPETC and TS (M = 
1000, n = 990, n1 = 5). ZPETC is not applicable for a = 1 
and TS is not applicable for |a| = 1.  

5. CONCLUSION 
This paper proposes a metric to evaluate the tracking 

performance of discrete-time LTI and LTV tracking controllers 

using the Frobenius norm of the control system’s lifted system 

representation. It is shown that the proposed Frobenius norm 

metric is closely related to the integral of the squared magnitude 



 

 

of the error dynamics; the metric also establishes an upper bound 

on tracking error.  

Moreover, it is shown that the FBF approach for tracking 

control of LTI NMP systems (which results in an LTV 

controller) is the optimal solution to the rank constrained 

minimization of the proposed metric. It is very interesting that, 

for FBF, the proposed Frobenius norm metric is independent of 

the plant dynamics and type of basis functions, whereas, for 

ZPETC and TS the metric is dependent on plant dynamics 

(specifically, zero location). The observations made using the 

proposed metric regarding FBF, ZPETC and TS are in agreement 

with those made in the literature. Analysis and simulations based 

on a plant with varying zero locations are used to further confirm 

the effectiveness of the proposed metric as a tool for evaluating 

the tracking performance of LTI and LTV discrete-time 

controllers.  

Ongoing work is focused on extending the study presented 

in this paper to cases involving complex NMP zeros, and 

extending the metric to the study of other factors of importance 

in tracking control, like control effort and robustness. 
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APPENDIX A: Lifted System Representation (LSR) 
An LTI SISO causal plant G can be expressed as 

1 2

0 1 2( )G q g g q g q      (28) 

where the coefficients gl are the Markov parameters of G. The 

sequence g0, g1, g2, … also represent the impulse response of G. 

Then 
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For a LTI non-causal controller C 
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         (30) 

the lifted system representation C can be expressed as 
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 (31) 

Similarly, L and Eff can be expressed in lifted domain as L and 

Eff. For LTI systems, the lifted system representation is Toeplitz. 

For LTV systems or controllers, the construction of the lifted 

system representation is same but the matrix is not Toeplitz [7].  

  

APPENDIX B: Relationship between Metric and 
System Dynamics 2-norm 

Based on Appendix A, the squared Frobenius norm of the 

LSR of Eff(q) can be expressed as  
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According to definition of 2-norm of Eff(q) and Parseval’s 

Theorem [24]  
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where 
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and using Eq. (32)   

2
2

,

1
2

,

2

,

1

2

,

( 1)

                           ( 1)

                           ( 1)

                           

                        

ff k ff F
k

M

ff k

k

ff k

k M

M

ff k

k M

M e

M e

M e

k e





 





 



 

 

 











E

 

(36) 

Re-arrangement of the terms in the equation results in 
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(37) 

Consider two different values of M, M1 and M2 such that M1 

> M2, then 
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(38) 

where Eff[M1] and Eff[M2] denote the LSRs of Eff(q) for trajectory 
lengths M1+1 and M2+1, respectively. The implication is that for 
M1 > M2 
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i.e., the value of the proposed Frobenius norm metric Je increases 
as M increases for a given dynamics Eff(q). 

Combining Eqs. (33) and (37) 
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As M→∞, the first two summation terms on right hand side of 
Eq. (40) tend to 0. Assume that eff,k is bounded by an exponential 
function, i.e., 
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where e (on the right hand side) is the Euler’s number and A and 
µ are positive non-zero constants. The implication of the 
assumption is that the output of dynamics Eff at a particular 
instant of time depends more on input at the current time instant 
and inputs immediately preceding or succeeding the current 
input as compared to inputs which occurred long time back or 
will occur after a long time in the future. This assumption is true 
for stable systems. Hence, the third summation term on right 
hand side of Eq. (40) is bounded by 
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Consider the bound on the summation, 
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The summation on the right hand side represents summation of 
an arithmetico-geometric sequence [25]. As M→∞ (based on 
sum of infinite arithmetico-geometric sequence with absolute 
value of common ratio of the geometric part of the sequence 
bounded by 1, i.e., |e−µ| < 1) 
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which implies that 
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The implication is that (based on Eqs. (40) and (45)) 
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APPENDIX C: Eckart-Young-Mirsky (EYM) Theorem 

[17–19] 
Consider matrix A (r1×r2, r1 ≤ r2) and 0 < r < r1, r is an 

integer, SVD of A (assuming full rank) is given by 
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then solution to the following problem  
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i.e., a truncated singular value decomposition and 
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The solution is unique if and only if σA,r+1 ≠ σA,r.  

Consider the rank constrained optimization problem 
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The SVD of I is of the form (the SVD is not unique) 
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For constant M, based on the EYM Theorem, one can conclude 
that the optimal solution is not unique and is of the form 
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From prior work [10] and Sec. 3.1, it is known that the lifted 
system representation of FBF overall dynamics, which will vary 
depending on the selected basis functions and the plant, is 
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 L ΨΨ ψ ψ  (55) 

where ψ
ĩ
 are the columns of �̃�   

T

i j ijψ ψ  (56) 

Every optimal solution of Eq. (51) is given by Eqs. (53) and (54) 

and every FBF overall dynamics can be expressed using Eqs. 

(55) and (56). Based on Eqs. (53)-(56) one can conclude that 

every optimal solution of Eq. (51) represents an FBF overall 

dynamics and every FBF overall dynamics is an optimal solution 

of Eq. (51). 
 

 


