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A low-order model for control design of very flexible aircraft (VFA) that accounts for
geometrical nonlinearities under large deformations is derived in this work. The low-order
model uses strain-basedmodal amplitudes as the flexible states and body-fixed frame linear and
angular velocities for the basic flight dynamics. The model is informed by a set of nonlinear
functions with explicit physical interpretations, representing the nonlinear structural and
aerodynamics properties of VFA. These nonlinear functions can be obtained from higher
fidelity structural and aerodynamic models or experimental tests. In this work, these nonlinear
functions are captured by a set of neural networks, which are trained based on the data
generatedusingnonlinear static results from theUniversity ofMichigan’sNonlinearAeroelastic
Simulation Toolbox (UM/NAST) solver. The resulting nonlinear VFA model is verified against
UM/NAST dynamic simulation results using a representative high-aspect-ratio-wing transport
aircraft model.

I. Introduction
Future transport aircraft are expected to have increased structural flexibility due to the reliance on lightweight

materials and high aspect-ratio wings to improve fuel consumption and emissions. The increased flexibility, however,
poses challenges to the modeling and control of the aircraft. Unlike models of a rigid aircraft with six degrees of
freedom (DOF), models of flexible aircraft typically have hundreds or thousands of states [1, 2]. The simplest approach
to deal with the model flexibility in control design is to correct the aerodynamic coefficients (flex/rigid ratios) in the
6-DOF rigid aircraft model and, potentially, include additional notch filters at the critical lowest frequencies to suppress
the aeroelastic modes [3]. This approach may lead to low-performance controllers [4] and does not effectively address
issues such as encountered in flutter control [5, 6]. On the other hand, the use of high-order models for controller design
is also challenging due to the large number of states [7, 8], most of which are not directly measurable. Such approaches
often yield high-order controllers that require actuators with unrealistically high performance/bandwidth for flexible
aircraft [9]. Therefore, low-order flexible aircraft models that capture the nonlinear aeroelastic behavior are needed for
controller design.

Such low-order models can be obtained by applying numerical model order reduction techniques to high-order
models [7, 10, 11]. While well-developed procedures exist for linear model order reduction, effective and scalable
nonlinear model order reduction is presently lacking. Furthermore, the physical meaning of the states and coefficients,
which can be beneficial in the controller and observer design process, is typically lost when applying such procedures.

An alternative approach exploits the augmentation of additional aeroelastic terms to the conventional 6-DOF rigid
aircraft model, leading to low-order analytical or semi-analytical nonlinear models [9]. This approach preserves the
physical meaning of the states and various terms in the model.

Early investigations of this semi-analytical low-order flexible aircraft model exploited the concept of mean axes,
and established the equations of motion using the instantaneous center of mass of the flexible aircraft as the reference
point [5, 12, 13]. The mean axes formulation decouples the structural dynamics from the term describing the translational
and rotational motions of the reference frame. A complementary approach is to formulate the problem based on a body
frame with its origin fixed at a given point of the flexible aircraft [9, 14–16]. The model using body-fixed axes does
not require small motion from the elastic body and, therefore, can account for the effect of the elastic deformation on
the first- and second-mass moments of inertia; it produces more accurate results as the elastic motions increase in
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magnitude [17]. Much of the previous literature assumed linear elasticity in their structural dynamics, leading to models
that are well suited for flexible aircraft. However, as the flexibility levels increase, those approaches cannot account for
the geometrical nonlinearities present in the very flexible aircraft (VFA) dynamics.

To establish a low-order model for VFA that captures the geometrical nonlinearities, Da Ronch et al. [18] presented a
nonlinear model order reduction technique based on Taylor series expansion of the nonlinear high-order flight dynamics.
Gibson et al. [15] used the dihedral angle as the flexible state and formulated a simple model of longitudinal flight
dynamics of a very flexible flying wing. Su and Cesnik [19] introduced a strain modal-based nonlinear approach to
reduce the number of flexible states. However, the evaluation of aerodynamics terms in [19] still requires the integration
of the strains into generalized displacements, which prevented significant reduction in the computational cost of the
full-order solution. Palacios and Cea [20] presented a very promising nonlinear modal condensation to Hodges’ intrinsic
beam theory to create the structural reduced-order model for a free-flying aircraft; however, no discussions were
presented on the aerodynamic reduced-order model to go along with it.

This paper presents a new method to incrementally build a VFA low-order model combining the conventional
6-DOF rigid aircraft model, nonlinear structural dynamics, and data-driven low-order aerodynamics. The nonlinear
functions are trained using neural networks and are based on the data generated from the full-order VFA model from the
University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) [2]. The trained nonlinear functions
are then used in the low-order dynamic simulations. The new low-order semi-analytical VFA model is exemplified
using a representative high-aspect-ratio wing commercial transport aircraft as the VFA model.

This paper is organized as follows: The equations of motion of VFA and its derivation are summarized in Section II.
Section III addresses the structural and aerodynamics nonlinear functions and formula to generate those terms from
full-order UM/NAST models. In Section IV, a high-order UM/NAST model of the high-aspect-ratio-wing commercial
transport aircraft as the VFA example is described. From it, nonlinear functions in the new low-order model are trained.
The new low-order model is evaluated under longitudinal and lateral excitations, comparing its dynamic responses to
the full-order UM/NAST dynamic solutions. Conclusions and future work are discussed in Section V.

II. Low-Order Model of Very Flexible Aircraft

A. Body-Fixed Axes Definition
Consider a VFA with a total mass of <. An inertial frame F� with origin $ � and a body-fixed frame F� with origin

$� (arbitrary point, but usually set as the aircraft undeformed center of mass) are defined as illustrated in Figure 1. The
frame F� is chosen to conform to the North-East-Down (NED) flight mechanics orientation and is related to frame F� by
a 3-2-1 Euler angle rotation (defined with Euler angles q, \, and k, respectively). The rotation matrix )� � is defined as

)� � =


2(k)2(\) 2(k)B(q)B(\) − 2(q)B(k) B(q)B(k) + 2(q)2(k)B(\)
2(\)B(k) 2(q)2(k) + B(q)B(k)B(\) 2(q)B(k)B(\) − 2(k)B(q)
−B(\) 2(\)B(q) 2(q)2(\)

 , (1)

where B(·) and 2(·) are short for sin(·) and cos(·) functions. The rotation matrix converts the coordinates in F� to the
ones in F� . For example, the velocity of the aircraft is defined as V =

� 3
3C

r�/� , its representation in F� (i.e., �+) and in
F� (i.e., �+) satisfy the following relationship

�+ = )� � (�+). (2)

In this work, a vector projected into F� frame is designated without extra notations, e.g., + = �+ . The translational
velocity (forward, lateral, and vertical speeds) and rotational velocity (roll, pitch, and yaw rates) of the aircraft in the
body-fixed reference frame F� are defined as + = {D, E, F}> and l = {?, @, A}>, respectively. The orientation of F�
with respect to F� is defined by roll-pitch-yaw Euler angles and the kinematics equations are given by

� 3
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Fig. 1 Inertial and body-fixed axes of a very flexible aircraft

where '(q, \) is the transformation matrix and q, \, and k are roll, pitch, yaw angles, respectively.
For an arbitrary point % on the aircraft, the vectors representing its position in reference frames F� and F� are

written as r%/� and r%/�, respectively. They satisfy the following relationship

r%/� = r%/� + r�/� , (4)

where r�/� is the inertial position of the vehicle (i.e., relative to the origin $ � of F� ). The time derivatives with respect
to reference frames F� and F� are denoted by � 3

3C
and �3

3C
, respectively, and they are linked through the transport theorem

as
� 3

3C
+ =

�3

3C
+ + l̃+, (5)

where l̃ is the skew-symmetric matrix given by

l̃ =


0 −A @

A 0 −?
−@ ? 0

 , (6)

which converts cross product to matrix multiplication. This skew-symmetric matrix satisfies the properties l̃> = −l̃ and
l̃+ = −+̃l. Due to the extensively used F� in this work, ¤+ and ¥+ are compact forms of �3

3C
+ and �32

3C2
+ for simplicity.
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B. Equations of Motion of Very Flexible Aircraft
For VFA, the geometric nonlinearity needs to be considered; thus, the deformation vector 4%0 cannot be directly

expressed as a linear combination of mode shapes. Therefore, the position vector of an arbitrary point, A% , on the VFA
is decomposed into the undeformed position, A%0 , and its corresponding nonlinear deformation, 4%0 , as

A% = A%0 + 4%0 ≈ A%0 + i ([, %0) , (7)

where [ ∈ R= is a vector of reduced-order flexible states while i ([, %0) is a nonlinear function representing the
nonlinear displacement due to deformation. Accordingly, the translation of the center of mass due to deformation is a
nonlinear function of [

4� ([) =
1
<

∫
%0∈Ω0

i ([, %0) 3<. (8)

Note that 4� ([) is a nonlinear function with =-dimensional input and 3-dimensional output. Define A� ([) to be the
position vector of the deformed center of mass with respect to the origin of F�, which satisfies mA� ([)

m[
=
m4� ([)
m[

.
The equation of motion of a point mass <% in reference frame F� is given by [21]

<%

(
� 32

3C2
A�/� + ¥A% + ¤̃lA% + 2l̃ ¤A% + l̃2A%

)
= �% , (9)

where �% is the total external force applied to the point mass. Note that the terms in Eq. (9) have explicit physical
meanings: the first term on the left is the inertial force due to the moving frame F�; the second term is the inertial
force of the point mass relative to the frame F�; the Euler, Coriolis, and Centripetal forces are the last three terms. The
terms derived from this equation also follow this nomenclature and are denoted by Frame, Relative, Euler, Coriolis, and
Centripetal, respectively. Direct integration of Eq. (9) and the integration with matrix product multiplier Ã% over the
entire mass of the deformed aircraft yields the translational and rotational equations of motion (EOM) of the VFA,
respectively. The EOMs for the reduced flexible states [ are obtained through the principle of virtual work.

1. Translational Equations of Motion
The time derivatives of the nonlinear deformation function i ([, %0) are given by

�3
3C
i ([, %0) = i[ ([, %0) ¤[,

�32

3C2
i ([, %0) =

�3
3C

(
i[ ([, %0) ¤[

)
= ¤[>i[[ ([, %0) ¤[ + i[ ([, %0) ¥[,

(10)

where i[ ([, %0) and i[[ ([, %0) are the Jacobian and Hessian matrices, respectively. The translational EOM is written
as

�Frame + �Relative + �Euler + �Coriolis + �Centripetal = �Ext, (11)

where �Ext is the vector of external forces applied to the VFA, while �Frame, �Relative, �Euler, �Coriolis, and �Centripetal are
computed by integrating the corresponding terms in Eq. (9), i.e.,

�Frame =

∫
%∈Ω

(
� 32

3C2
A�/�

)
3< = <

� 3

3C
+ = <

( ¤+ + l̃+ )
, (12)

�Relative =

∫
%∈Ω

¥A%3< = ¤[>
©«

∫
%0∈Ω0

i[[ ([, %0) 3<
ª®®¬ ¤[ +

©«
∫

%0∈Ω0

i[ ([, %0) 3<
ª®®¬ ¥[

= < ¤[> m
2A� ([)
m[2 ¤[ + <mA� ([)

m[
¥[,

(13)

�Euler =

∫
%∈Ω

¤̃lA%3< = −<Ã� ([) ¤l, (14)
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�Coriolis =

∫
%∈Ω

2l̃ ¤A%3< = 2<l̃
mA� ([)
m[

¤[, (15)

�Centripetal =

∫
%∈Ω

l̃2A%3< = <l̃2A� ([) . (16)

The external force is decomposed into gravity, aerodynamics, and thrust terms as

�ext = �g + �aero + �thrust, (17)

where �g = <6 (6 is the altitude-dependent gravitational acceleration vector projected into the body-fixed frame, F�)
and

�thrust =

=T∑
8=1
)848 ([), (18)

where =T is the number of thrust forces on the VFA, )8 is the thrust force provided by the 8th thruster and 48 is the
8th force pointing direction. For VFA, the thrust force’s direction 48 is also a function of the flexible state, [. The
aerodynamic force �aero is assumed to be a nonlinear function of the rigid body velocities (i.e., + , l), flexible state and
its rates (i.e., [ and ¤[), Euler angles (i.e., q, \, and k), control surface deflections X, and altitude ℎ (due to the change of
air density). The procedure to extract and train this nonlinear function is detailed in Section III.

2. Rotational Equations of Motion
The rotational EOM is derived by pre-multiplying both sides of Eq. (9) by Ã% and integrating, i.e.,

"Frame + "Relative + "Euler + "Coriolis + "Centripetal = "Ext, (19)

where "Ext is the external moment applied to the VFA with respect to the origin of F�. The terms "Frame and "Relative
are given by

"Frame =

∫
%∈Ω

(
Ã%

� 32

3C2
A�/�

)
3< = <Ã� ([)

( ¤+ + l̃+ )
, (20)

and
"Relative =

∫
%∈Ω
(Ã% ¥A%)3<

=
∫

%0∈Ω0

(
Ã%0 + ĩ ([, %0)

) (
¤[>i[[ ([, %0) ¤[ + i[ ([, %0) ¥[

)
3<

= ¤[>�hess ([) ¤[ + �jac ([) ¥[,

(21)

where
�hess ([) =

∫
%0∈Ω0

(
Ã%0 + ĩ ([, %0)

)
i[[ ([, %0) 3<,

�jac ([) =
∫

%0∈Ω0

(
Ã%0 + ĩ ([, %0)

)
i[ ([, %0) 3<.

(22)

The term "Euler is given by

"Euler =

∫
%∈Ω

Ã% ¤̃lA%3< = �� ([) ¤l, (23)

where �� ([) = −
∫

%∈Ω
Ã% Ã%3< is the inertia matrix that can be further decomposed as

�� ([) = −
∫

%0∈Ω0

(
Ã%0 + ĩ ([, %0)

) (
Ã%0 + ĩ ([, %0)

)
3< = �

(0)
�
+ � (1)

�
([) + � (2)

�
([) , (24)
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where � (0)
�
= −

∫
%0∈Ω0

(
Ã%0 Ã%0

)
3< is the inertia matrix of the undeformed aircraft, and � (1)

�
([) and � (2)

�
([) are defined as

�
(1)
�
([) = −

∫
%0∈Ω0

(
Ã%0 ĩ ([, %0) + ĩ ([, %0) Ã%0

)
3<,

�
(2)
�
([) = −

∫
%0∈Ω0

(ĩ ([, %0) ĩ ([, %0))3<.
(25)

The term "Coriolis is given by

"Coriolis =

∫
%∈Ω

2Ã%l̃ ¤A%3< = 2(�0 ([) ¤[)l, (26)

where
�0 ([) = −

∫
%0∈Ω0

(
Ã%0 + ĩ ([, %0)

)
ĩ[ ([, %0) 3<. (27)

The term "Centripetal is given by

"Centripetal =

∫
%∈Ω

Ã%l̃l̃A%3< = l̃�� ([) l. (28)

This derivation exploits the property of cross product (D̃1D̃2D̃2D1 = −D̃2D̃1D̃1D2) for arbitrary vectors D1 and D2.
The external moment is decomposed into gravity, aerodynamics, and thrust terms as

"ext = "g + "aero + "thrust, (29)

where

"g =

∫
%∈Ω

(Ã%6)3< = <Ã� ([)6, (30)

"thrust =

=T∑
8=1
)8 ÃT,8 ([)48 ([), (31)

where AT,8 is the position of the 8th thrust force. Similar to �aero, the aerodynamic moment term "aero is a nonlinear
function of the rigid-body, flexible states, and control inputs, which is detailed in Section III.

3. The Equations of Motion of the Flexible States
One may proceed by computing the virtual work of various forces in Eq. (9) based on the virtual displacement X[.

The corresponding virtual displacement at each point is specified by mi

m[
X[. As an expression of Hamilton’s Principle,

one has:

X* + X[> ©«
∫
%∈Ω

mi

m[

> (
� 32

3C2
A�/� + ¥A% + ¤̃lA% + 2l̃ ¤A% + l̃2A%

)
3< −

∫
%∈Ω

mi

m[

>
3�%

ª®¬ = 0, (32)

where* is the total potential energy of the deformable body that can be written as X* = X[>&Elastic (more details in
Section III). Accordingly, Eq. (32) is reduced to

&Elastic +&Frame +&Relative +&Euler +&Coriolis +&Centripetal = &Ext, (33)

where

&Frame =

∫
%∈Ω

(
mi

m[

)> (
� 32

3C2
A�/�

)
3< = <

(
mA� ([)
m[

)>
( ¤+ + l̃+), (34)

&Relative =

∫
%∈Ω

(
mi

m[

)>
¥A%3< = " ([) ¥[ + 1

2
¤[> m"
m[
¤[, (35)
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where "8 9 is the element of modal mass matrix " defined as

"8 9 =

∫
%∈Ω

(
mi

m[8

)> (
mi

m[ 9

)
3<. (36)

The &Euler is given by

&Euler =

∫
%∈Ω

(
mi

m[

)>
¤̃lA%3< = �>jac ([) ¤l, (37)

where �jac ([) is defined in Eq. (22). The term &Coriolis is written as

&Coriolis =

∫
%∈Ω

2
(
mi

m[

)>
l̃ ¤A%3< = 2 (a([) ¤[) l, (38)

where
a([) = −

∫
%∈Ω

i>[ ĩ[3<. (39)

Note that the �jac ([) and �hess ([) defined in Eq. (22) satisfy following relationship

m�jac ([)
m[

= �hess ([) +
∫
%∈Ω

ĩ[i[3< = �hess ([) + a([). (40)

This relationship can be exploited in computations in that once a([) and �jac ([) are computed, �hess ([) is determined
with m�jac ([)

m[
and a([). The term &Centripetal is defined as

&Centripetal =

∫
%∈Ω

(
mi

m[

)>
l̃2A%3< = −l>�0 ([)l, (41)

where �0 ([) is defined in Eq. (27). Assume strain-based deformation of [ and the generalized elastic force is given by

&Elastic =
m*

m[
=  [. (42)

The external generalized force &Ext =
∫

%∈Ω

mi

m[

>
3�% is decomposed into gravity, aerodynamics, and thrust terms as

&ext = &g +&aero +&thrust, (43)

where

&g =

(
mA�

m[

)>
6, (44)

&thrust =

=T∑
8=1
)8

©«
m

(
A>T,848

)
m[

ª®®¬
>

. (45)

The aerodynamics term &aero is a nonlinear function of the rigid-body states, flexible states, and their rates, as well as
the control surface deflections. The representation for &aero is derived by approximating the high-order nonlinear model
as further detailed in Section III.
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C. Summary of the Equations of Motion
Equations (11)-(45) are aggregated into a system of first-order ordinary differential equations that represent the

evolution of rigid body and flexible states as

�
3

3C


+

l

¤[
[


= −


<l̃+ + < ¤[> m

2A� ([)
m[2 ¤[ + 2<l̃ mA� ([)

m[
¤[ + <l̃2A� ([)

<Ã� ([) (l̃+) + ¤[>�hess ([) ¤[ + 2(�0 ([) ¤[)l + l̃�� ([) l
<

(
mA� ([)
m[

)>
(l̃+) + 1

2 ¤[
> m"
m[
¤[ + 2 (a([) ¤[) l − l>�0 ([)l +  [
− ¤[


+


�g + �aero + �thrust

"g + "aero + "thrust

&g +&aero +&thrust

0


, (46)

where

� =


< −<Ã� ([) <

mA� ([)
m[

0
<Ã� ([) �� ([) �jac ([) 0

<

(
mA� ([)
m[

)>
�>jac ([) " ([) 0

0 0 0 �=


. (47)

The equations of motion in Eq. (46), together with kinematics given in Eqs. (2) and (3), form a complete set of VFA
equations of motion.

III. Nonlinear Functions Identification Exploiting Strain-based Full-order Models
The EOM in Eq. (46) contains a set of nonlinear functions, including aerodynamic forces and moments, that

depend on the nonlinear structural deformation and they must be numerically obtained. These nonlinear terms and their
input-output dimensions are specified in Table 1. For the structural terms, the vector of flexible states [ is sufficient
to represent the nonlinear deformation, and thus the input dimensions are relatively low. Some structural terms are
symmetric (e.g., ��, ") or have fixed norm (e.g., 48). Considering these properties, the output dimensions of these terms
are reduced. Note that we assume that the derivatives of the nonlinear functions can be directly computed. Therefore, as
discussed in Section II.B.3, the term �hess can be computed based on Eq. (40). The aerodynamic terms �aero, "aero, and
&aero take the rigid body velocities (i.e., + , l), flexible states and their rates (i.e., [ and ¤[), Euler angles (i.e., q, \, and
k), control surface deflections X, and altitude ℎ as input. Therefore, the input dimension for the aerodynamic terms is
2= + =X + 10, where =X is the number of control surfaces.

Table 1 Identified nonlinear functions and their dimensions

Nonlinear function Input/output dimension

Structural terms

A� ([) R= → R3

AT,8 ([) R= → R3

48 ([) R= → R2 (due to unit vector)
�� ([) R= → R6 (due to symmetry)
" ([) R= → R=(=+1)/2 (due to symmetry)
�jac ([) R= → R3×=

�0 ([) R= → R3×3×=

a([) R= → R=×3×=

Aerodynamic terms
�aero R2=+=X+10 → R3

"aero R2=+=X+10 → R3

&aero R2=+=X+10 → R=

Although the selected flexible state [ is designed to be a low-dimensional vector representing the main strain-based
modes, the corresponding nonlinear functions are computed by the integration over the entire aircraft body, and hence
require a high-fidelity description of the deformation. In this work, this high-fidelity deformation information and
aerodynamics are extracted from UM/NAST [2], which adopts nonlinear beam elements and strain-based formulation.
In the UM/NAST formulation [2], nonlinear beam elements are employed to model the elastic deformation of VFA.
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Consider B as the curvilinear beam coordinate shown in Figure 2, and ℎ(B) describing the position and orientation of
each node along the beam with a vector consisting of 12 components, i.e.,

ℎ(B)> =
{
[A� + AF (B)]> FG (B)> FH (B)> FI (B)>

}
, (48)

where A� is the column vector of the body position vector of the aircraft’s body-fixed reference frame F� origin, AF (B)
is the column vector of the position vector of a node along the beam reference line with respect to the origin of F�, both
expressed in the body-fixed frame. The column vectors FG (B), FH (B), FI (B) represent the unit vectors of a triad on the
deformed beam frame pointing along the beam reference axis, towards the leading edge, and normal to beam surface,
respectively, resolved in the body frame.

wx(s,t)

Gx

Gz

Gy

rP

Bx

Bz

By wz(s,t)
wy(s,t)

wx(0,t)
wz(0,t)

wy(0,t)
Undeformed Shape

Deformed Shape

rB

B

FB

FI

rP0

w

P0

P

Fw
rw

Fig. 2 UM/NAST coordinate systems and basic position/orientation vectors. The FG , FH and FG are shown as
functions of B.

Beam elements with constant strains are employed in UM/NAST to model the nonlinear deformation. Within each
constant-strain element, the strain vector is given by

n>4 =
{
nG ^G ^H ^I

}
, (49)

where nG is the extensional strain, ^G , ^H , and ^I are the twist of the beam reference line, bending about the local FH
axis, and bending about the local FI axis, respectively. The advantage of such selection is that the strain vector is a local
variable associated with the element, which does not explicitly depend on the states of other elements. Accordingly,
strain-based formulation allows to maintain a constant stiffness matrix without the assumption of small deformation,
which is especially beneficial in the VFA modeling where large deformation and geometrical nonlinearity must be
captured. The total strain vector of the complete aircraft is obtained by assembling the strain vector of all elements as

n> =
{
n>
41 n>

42 n>
43 . . .

}
. (50)

The UM/NAST solver [2] computes the displacement ℎ(n), the Jacobian matrix �ℎn (n) = mℎ
mn

, and mass terms (e.g.,
"�� (n) and "�� (n)) for given n . It also computes the total aerodynamic forces �aero, "aero, and &aero with additional
dependence on rigid-body states, control surface deflections, and strain rate states. Therefore, as shown in Figure 3,
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UM/NAST can be used as a tool to generate the values of the nonlinear terms to be trained in Table 1 for a large number
of random inputs within prescribed bounds. Note that the outputs of the UM/NAST need to be reformulated and
calculated to get the derived nonlinear terms in Table 1; the process is detailed in this section. The processed input and
output data are then fitted with neural networks, the analytical derivatives of which can be symbolically computed as
described in the Appendix.

Analytical	 	and
Jacobian	

Aerodynamics
module

High-order	strain-based	model
(e.g.,	UM/NAST)

Neural	network
nonlinear

approximations
Analytical
derivatives

Fig. 3 UM/NAST model used for data generation for nonlinear function training in the low-order model

Now consider the strain-based modal amplitude [ defined in Section II connected to the full strain state n via

n = Φ[ + n0, (51)

where n0 is the initial strain state where the modal decomposition is performed about it. This n0 can be selected to be a
trimmed strain state at a representative flight condition or any other initial state from which the dynamic motion of
interest will evolve. The potential energy is written as

* =
1
2
n> n n . (52)

Therefore, &Elastic in Eq. (42) is given by
&Elastic =  [ +Φ> n n0. (53)

where the generalized stiffness matrix is given by

 = Φ> nΦ. (54)

The Jacobian matrix with respect to [ is defined as

�ℎ[ = �ℎnΦ. (55)

In UM/NAST, the mass terms "�� (n) and "�� (n) are expressed as functions of n . Using the expression

"�� =

[
<�3 −<Ã� ([)

<Ã� ([) �� ([)

]
, (56)

the nonlinear terms A� ([) and �� ([) can be directly extracted. Similarly, the mass matrix for the flexible states " ([) in
the new formulation is computed following

" ([) = Φ>"��Φ. (57)
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Note that in the UM/NAST formulation, the position of an arbitrary point is established as

A% = AF + HFH + IFI , (58)

where the pair (H, I) defines the position of a point within a local beam cross-section frame FF . Accordingly, the
component of �jac ([) for a single element (defined as � (4)jac ([)) is given by

�
(4)
jac ([) =

∫
ΔB

∫
�(B)

(ÃF + HF̃H + IF̃I)
(
mAF

m[
+ H

mFH

m[
+ I mFI

m[

)
d3�3B. (59)

Define the cross-section inertia matrix "CS (B) and the element inertia matrix " (4) as [2]

"CS (B) =
∫
�(B)

d


1 0 H I

0 0 0 0
H 0 H2 HI

I 0 IH I2


3�, (60)

" (4) =

∫
ΔB

"CS (B)3B. (61)

Also, AF , FG , FH , and FI for the 4th element are components of the ℎ vector, and are denoted as ℎ (4) (1), ℎ (4) (2),
ℎ (4) (3), and ℎ (4) (4), respectively. Similar notation is also used for the segmentation of the Jacobian matrices �ℎn and
�ℎ[ . Note that " (4) is a part of the mass matrix provided by UM/NAST, while AF , FG , FH , and FI are components of
ℎ vector in UM/NAST. Therefore, the calculation of �jac ([) is performed using the following expression,

�jac ([) =
∑
4

�
(4)
jac ([), (62)

where

�
(4)
jac ([) =

4∑
9=1

4∑
8=1

ℎ̃ (4) (8) " (4) (8, 9) � (4)
ℎ[
( 9). (63)

Similar techniques can be applied to the calculation of �hess ([), i.e.,

�hess ([) =
∑
4

�
(4)
hess ([), (64)

where

�
(4)
hess ([) =

4∑
9=1

4∑
8=1

ℎ̃ (4) (8) " (4) (8, 9) � (4)
ℎ[[
( 9). (65)

Note that �ℎ[[ is a 3-dimensional tensor defined as

�ℎ[[ =
m�ℎ[

m[
. (66)

The calculation of �0 ([) can be performed by exploiting the decomposition throughout the elements, i.e.,

�0 ([) =
∑
4

�
(4)
0 ([), (67)

where

�
(4)
0 ([) = −

∫
ΔB

∫
�(B)

(ÃF + HF̃H + IF̃I)
(�mAF
m[
+ H

�mFH
m[
+ I

�mFI
m[

)
d3�3B. (68)
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Following the same arrangement in Eq. (61), its evaluation is given by

�
(4)
0 ([) = −

4∑
9=1

4∑
8=1

ℎ̃ (4) (8) " (4) (8, 9) �̃ℎ[
(4) ( 9). (69)

To obtain a([), one also relies on the decomposition across the elements, i.e.,

a([) =
∑
4

a (4) ([), (70)

where

a (4) ([) = −
∫
ΔB

∫
�(B)

(
mAF

m[
+ H

mFH

m[
+ I mFI

m[

)> (�mAF
m[
+ H

�mFH
m[
+ I

�mFI
m[

)
d3�3B. (71)

Following the same arrangement in Eq. (61), its evaluation is given by

a (4) ([) = −
4∑
9=1

4∑
8=1

(
�ℎ[

(4) (8)
)>
" (4) (8, 9) �̃ℎ[

(4) ( 9). (72)

This decomposition across the elements also provides a different way to calculate the center of mass A� ([), which is
based on

A� ([) =
∑
4

A
(4)
�
([), mA� ([)

m[
=

∑
4

mA� ([)
m[

(4)
, (73)

where

A
(4)
�
([) = 1

<

∫
ΔB

∫
�(B)

(
AF + HFH + IFI

)
d3�3B =

1
<

4∑
9=1

" (4) (1, 9) ℎ (4) ( 9), (74)

mA� ([)
m[

(4)
=

1
<

∫
ΔB

∫
�(B)

(
mAF

m[
+ H

mFH

m[
+ I mFI

m[

)
d3�3B =

1
<

4∑
9=1

" (4) (1, 9) � (4)
ℎ[
( 9). (75)

The advantage of this formulation is that the derivative term mA� ([)
m[

is directly calculated using the Jacobian �ℎ[ and the
finite element mass matrix.

IV. Simulation Results

A. XRF1-HARWModel
The new approach of VFA low-order modeling is exemplified using a high-aspect-ratio-wing commercial transport

aircraft denoted by XRF1-HARW. The XRF1 model is a representative example of current long-range wide-body
commercial transport aircraft. The XRF1-HARW model has been generated based on the conventional XRF1 with an
increased aspect-ratio wing but the same fuselage and tail, as shown in Figure 4. The XRF1-HARW aircraft weighs
1.29 × 105 kg, and has a wingspan of 70 m. Its modeling using UM/NAST and the comparison to the corresponding
NASTRAN models are detailed in [22]. This XRF1-HARW UM/NAST is referred to as the full-order model in this
paper, which contains 1085 states, including 13 rigid states and 1072 flexible strain states (i.e., n and ¤n).

Regarding the control effectors, the XRF1-HARW model originally had nine: two engines to produce thrust, two
ailerons per wing, one elevator divided into a left and a right section, and a rudder. In this paper, the number of control
inputs is reduced based on the following definitions and input grouping:

• the two engines produce equal thrust ) ;
• the outer ailerons are not deflected;
• the left and right elevator sections are equally deflected by an angle X4;
• the left and right inboard ailerons are anti-symmetrically deflected by an angle X0;
• the rudder is deflected by an angle XA .
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Accordingly, the control surface deflection vector X is defined as

X = {X4 X0 XA }>. (76)

To illustrate the strain-based mode, the displacement corresponding to a unit [1 and [2 are shown in Figure 5. They
are out-of-plane bending modes on the left and right wings.

The out-of-plane bending curvatures at the root of the wings are chosen as examples of critical stations for monitoring
the structural responses (e.g., when controlling maneuver loads). They are two entries in the n vector and are defined as
^! and ^' for left and right wing, respectively. These bending curvatures can be conveniently calculated from the new
low-order models using the relationship between [ and n given in Eq. (51).

Fig. 4 Comparison of the XRF1 (black) and XRF1-HARW (blue) wing box and body [22]
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Fig. 5 XRF1-HARW deformed shape corresponding to the first two strain-based mode shapes

B. Nonlinear Function Identification
Following the procedure detailed in Section III, the nonlinear terms in Eq. (46) are represented by neural networks

with a single hidden layer. Four strain-based modes are preserved in the study, and the trimmed strain state is selected
to be n0 in Eq. (51). For the structural terms in Table 1, 1, 000-random [ samples within the prescribed bounds
are generated. With ℎ([) and �ℎn ([) computed by UM/NAST structural solver, the output samples of the nonlinear
functions in Table 1 are calculated using Eqs. (56)–(75). These samples of input-output pair are thus trained to fit the
neural networks. The neural network architecture with a sufficient number of neurons has been chosen to guarantee the
coefficients of determination (i.e., R2) to be larger than 0.99. Due to different dimensions of the nonlinear functions,
50 neurons are used for the approximation of A� ([), AT,8 ([), 48 ([), �� ([), " ([) and �jac ([), while 200 neurons are
used for the approximation of �0 ([) and a([). The aerodynamic terms’ input size is significantly larger than the
structural terms, thus, 10, 000-random samples of the rigid-body state, flexible state and their rates are generated, and the
corresponding aerodynamic loads are evaluated using UM/NAST static solver. The approximation of the aerodynamics
also employs a neural network with a single hidden layer and 200 neurons. For all the data generated, 70% of the
input/output data are used for training, 15% of the data are used for validation, while another 15% of data are used for
testing. The trained result of A� ([) is shown with the first two strain-based modes in Figure 6. Since the first two modes
are the out-of-plane bending modes, the nonlinear deformation effect on the center of mass is primarily along the I
(vertical) axis and is almost linear with respect to [1 and [2. The nonlinear functions’ dependence along of the G and H
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axes, though relatively small, is still captured in the trained neural network. Note that the term mA� ([)
m[

can either be
generated from taking the analytical derivative of the fitted A� ([) or by fitting the data generated using Eq. (75). To test
this usage of analytical derivative of the neural network, 20 random [ samples are generated and the corresponding
mA� ([)
m[

is calculated using UM/NAST structure solver and Eq. (75). This is referred to as the reference data, and is
compared to mA� ([)

m[
generated from taking the analytical derivative of trained A� ([). The comparison results are shown

in Figure 7, where the analytical derivative of trained A� ([) captures the responses well (with R2 larger than 0.99).
Improvements to this correlation could be obtained by increasing the training data. However, the accuracy obtained
from the direct derivative of the NN approximation is adequate for the current example.
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solution

C. Dynamic Simulation
With the trained nonlinear functions, the new VFA low-order model is employed in dynamic simulations. The

XRF1-HARW is trimmed at an altitude of 8, 484 m and a speed of 254 m/s. The trimmed angle of attack is 0.5◦.
Longitudinal, lateral, and coupled excitations are introduced using elevator, aileron, and rudder doublets, with the
time-domain profile illustrated in Figure 8. In these doublet excitations, Cstart = 1 second, Chalf = 4 seconds, and Cend = 7
seconds are specified for the entire 10-second simulation. The excitation amplitudes decide the level of introduced
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Fig. 8 Input doublet profile

geometrical nonlinearity. The left and right wing tip deflections from the full-order UM/NAST solutions under 1- and
5-degree doublet excitations, from different control surfaces and their combinations, are plotted in Figure 9 and Figure 10,
respectively. Due to the North-East-Down coordinate definition, negative values of I tip displacement indicates an
upwards wing shape deflection. For 1-degree elevator doublet excitation, about 4% I-tip deflections are observed
during the maneuver. The 1-degree aileron and rudder doublet excitations introduce significant lower tip deflection. As
shown in Figure 10, 5-degree elevator and coupled doublet excitations introduce about 23% I-tip deflections during the
maneuver, where prominent geometrical nonlinearity is presented. Therefore, to showcase the new low-order model’s
performance, two coupled excitations (both longitudinal and lateral) of different input amplitudes representing small
and large deformation are selected and simulated.
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Fig. 9 Tip deflections under single-channel and coupled excitations for 1-degree doublet amplitude

The responses of the new low-order model and the full-order UM/NAST solutions under small coupled excitation
(1-degree doublet input) are shown in Figures 11. The translation velocities (D, E, and F), rotation velocities (?, @, and
A), Euler angles (q, \, and k), and representative flexible states (the out-of-plane bending curvatures at the roots of
the wings (^! and ^')) are presented. The longitudinal responses of the pitch rate (@) and angle (\) are well captured.
The bending curvature trend is also captured with the new model, while the estimated amplitudes are slightly smaller
than the UM/NAST solution. This arises from the discarded strain-based mode shapes, which also contribute to the
responses of the rigid-body and flexible states. The trend of the lateral responses (i.e., the roll rate (?), yaw rate (A), roll
angle (q), and yaw angle (k)) are also captured. High-frequency responses in the full-order UM/NAST solution are not
present in the low-order model since only the first four low-frequency strain-based modes are preserved in it.

The responses of the low-order model and the full-order UM/NAST solutions under large coupled excitation
(5-degree doublet input) are shown in Figures 12. The longitudinal responses of the forward speed D, the vertical
speed F, the pitch rate @, and the pitch angle \ are well captured. Also, the trend of the bending curvature is also well
captured with the low-order model. Note that the profiles of the responses are different compared to the small-excitation
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Fig. 10 Tip deflections under single-channel and coupled excitations for 5-degree doublet amplitude
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Fig. 11 Dynamic response to coupled 1-degree elevator, aileron, and rudder doublet excitation

responses shown in Figures 11, particularly around 7 seconds, where the curvature reaches its maximum absolute value.
This indicates that the low-order model captures the longitudinal responses considering geometrical nonlinearities.
However, the lateral responses (primarily roll rate ? and yaw rate A) with a small number of flexible state (= = 4) exhibit
a phase shift after 6 seconds. The profile of the responses is more like the responses of the small-amplitude excitations
shown in Figures 11. This inaccuracy arises from two primary sources, i.e., the limited number of the preserved modes
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Fig. 12 Dynamic response to coupled 5-degree elevator, aileron, and rudder doublet excitation

onto which the full-order equations are projected and the inaccuracy in the neural net training of aerodynamic loads.
The low-order model with an increased number of preserved modes (= = 10) shows an enhanced prediction of the trend
in that it no longer exhibits the phase shift observed in the low-order model with = = 4. However, the lateral responses’
error is still higher compared to the longitudinal responses due to its relatively smaller and noisier terms, which are not
prioritized in the aerodynamics training. Therefore, to further enhance the lateral responses’ accuracy, a more dedicated
training process considering the differences in longitudinal and lateral terms needs to be established.

V. Conclusion
A modeling framework for the flight dynamics of very flexible aircraft is presented that leads to nonlinear low-order

models accounting for geometric nonlinearities due to large deformations. The equations were established to represent
the dynamics of the rigid-body degrees of freedom and the aeroelastic behavior of the free-flying vehicle based on a low
number of strain-based modal amplitudes. The new model preserves the physical meaning of the terms in classical flight
dynamics and augments it with the nonlinear elastic-related ones. The new (nonlinear) terms in the equations of motion,
along with the distributed aerodynamic loads, need to be identified from the reference full-order model. A specific way
of identifying these nonlinear functions was detailed here. It is based on neural network training applied to the data
generated from the aircraft’s full-order model using the University of Michigan’s Nonlinear Aeroelastic Simulation
Toolbox (UM/NAST). The new low-order modeling approach is illustrated for a high-aspect-ratio-wing commercial
transport aircraft model (XRF1-HARW), representing a very flexible aircraft. As the results showed, the number of
flexible states can be significantly reduced, while capturing the responses provided by the full-order model.

Appendix: Derivatives of Shallow Neural Network
The input and output of the shallow neural network are defined to be G and H. The nonlinear function is written as

H̄ = !2tansig(!1Ḡ + 11) + 12, (77)
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where Ḡ and H̄ are the input and output normalized by the range of the input and output data. For scalar nonlinear
function, the normalization is written as

Ḡ =
2(G − Gmin)
Gmax − Gmin

+ 1, (78)

H̄ =
2(H − Hmin)
Hmax − Hmin

+ 1. (79)

For general multi-dimensional nonlinear function, the normalization is written as

Ḡ = 2Δ−1
G (G − Gmin) + 1, (80)

H̄ = 2Δ−1
H (H − Hmin) + 1, (81)

where

Δ G = diag
{
Gmax,1 − Gmin,1, Gmax,2 − Gmin,2, ..., Gmax,=G − Gmin,=G

}
, (82)

Δ H = diag
{
Hmax,1−min,1, Hmax,2 − Hmin,2, ..., Hmax,=H − Hmin,=H

}
. (83)

Function tansig(G) (shown in Figure 13) is the selected activation function and is defined as

tansig(G) = 2
4−2G + 1

− 1. (84)

The first and second order derivatives are given by

tansig′(G) = 3

3G
tansig(G) = 44−2G

(4−2G + 1)2
, (85)

tansig′′(G) = 32

3G2 tansig(G) = 164−4G(
4−2G + 1

)3 −
84−2G(

4−2G + 1
)2 . (86)
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Fig. 13 Illustration of tansig(G) function

The calculation of Jacobian of the nonlinear function is written as
mH

mG
=
mH

mH̄

mH̄

mḠ

mḠ

mG
. (87)

Note that
mH

mH̄
=
Δ H

2
,
mḠ

mG
= 2Δ−1

G . (88)

The derivatives of the normalized input and output

mH̄

mḠ
= !2diag{tansig(1) (GNN)}!1, (89)
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where
GNN = !1Ḡ + 11. (90)

For second-order and higher-order derivatives, the tensor notation is used for clarity. Equation (77) in tensor notation is
written as

H̄8 =
∑
0

!2,80tansig(
∑
9

!1,0 9 Ḡ 9 + 11,0) + 12,8 . (91)

The first- and second-order derivatives are given as

mH8

mG 9
=

∑
0

Δ H,88!2,80tansig′(GNN,a)!1,0 9Δ
−1
G, 9 9 , (92)

m2H8
mG 9mG:

=
∑
0

Δ H,88!2,80tansig′′(GNN,a)!1,0 9!1,0:Δ
−1
G, 9 9Δ

−1
G,:: . (93)
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