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ABSTRACT A hybrid (i.e., physics-guided data-driven) feedforward tracking controller is proposed for
systems with unmodeled linear or nonlinear dynamics. The proposed controller is based on the filtered
basis functions (FBF) approach, and hence called a hybrid FBF controller. It formulates the feedforward
control input to a system as a linear combination of a set of basis functions whose coefficients are selected
to minimize tracking errors. To predict the system response and thereby the tracking errors, the basis
functions are filtered using a combination of two linear models. The first model is physics-based and remains
unaltered during the execution of the controller, while the second is data-driven and is continuously updated
during the execution of the controller. To ensure its practicality and safe learning, the proposed hybrid
FBF controller is equipped with the abilities to handle delays in data acquisition and to detect impending
instability due to its inherent data-driven feedback loop. The effectiveness of the hybrid FBF controller is
demonstrated via application to vibration compensation of a 3D printer with unmodeled linear and nonlinear
dynamics. Thanks to the proposed hybrid FBF controller, the tracking accuracy of the 3D printer and the
print quality are both significantly improved in experiments involving high-speed printing, compared to
standard FBF controller that does not incorporate a data-driven model. Furthermore, the ability of the hybrid
FBF controller to detect, and hence to potentially avoid, impending instability is demonstrated offline using
data collected online from experiments.

INDEX TERMS Computer numerical control, data-driven modeling, motion control , nonlinear dynamical
systems, predictive control, smart manufacturing, three-dimensional printing, trajectory tracking, vibration
control.

I. INTRODUCTION

TRACKING control is important in a wide range of
applications, such as manufacturing, robotics, and aero-

nautics. The goal of the tracking control is to force the
output of a dynamic system to follow a desired trajectory
by minimizing the tracking error, i.e., the difference between
the output and the desired trajectories. In particular, feed-
forward (FF) techniques play an important role in tracking
control. Compared to feedback (FB) control, FF control can
preemptively compensate tracking error, which is impossible
using FB control. In some applications, such as 3D printing,

where open-loop-controlled stepper motors are typically used
for motion generation, FF is the only resource for control.
Moreover, even in applications where sensors are available,
they may be unsuitable for real-time FB control due to
practical constraints, like sensor and data acquisition delays,
excessive noise, observability or stability concerns. More-
over, FF control can always be combined with FB control
to improve overall tracking accuracy.

Theoretically, perfect FF tracking control can be achieved
by exact model inversion. In linear systems, the model in-
version can be simplified to pole-zero cancellation. However,
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due to the common occurrences of uncancellable zeros and
uncertainty in system dynamics, exact model inversion may
lead to unbounded control signals or poor tracking perfor-
mance in practice. To solve this issue, various FF controllers
based on approximate model inversion have been proposed
in the literature, as summarized in review papers like [1]–
[3]. Examples include the zero phase error tracking con-
troller (ZPETC) [4], zero magnitude error tracking controller
(ZMETC) [5], extended bandwidth ZPETC [6], and model
matching controller [7], to name a few. A relatively recent
addition to the available tracking control methods is the
filtered basis functions (FBF) approach [8]–[13]. The origin
of the FBF approach can be traced back to the work of Frueh
and Phan [14] on inverse linear quadratic iterative learning
control (ILC). It formulates the FF control input to a system
as a linear combination of a set of basis functions that are
filtered using the system’s model to predict the system’s out-
put. Then, the unknown coefficients of the basis functions are
then selected to minimize tracking error. A major advantage
of the FBF approach over several other FF tracking control
techniques is its versatility; it is applicable to any linear sys-
tem and has been shown to yield accurate tracking regardless
of the location of zeros of the system in the complex plane
[8]. One application that has benefited from the versatility of
the FBF approach is tracking control of vibration-prone 3D
printers, which have a variety of underlying dynamics [9],
[12], [13], [15].

However, a major deficiency of standard FF tracking
control techniques is their inability to handle unmodeled
dynamics prevalent in practice. For example, the vibration
dynamics of 3D printers often have unmodeled nonlinear
dynamics, e.g., due to friction, backlash and nonlinear belt
stiffness [9], [12]. These nonlinear dynamics are left out of
the identified linear models used for FF tracking control.
Moreover, the vibration dynamics of 3D printers vary over
time due to printer wear or end-user modifications. These
changes to the printer dynamics are unknown, and hence not
captured in the models used for FF tracking control. A variety
of strategies that utilize data to correct the controller or the
model have been proposed in the literature to enable FF track-
ing controllers to handle unmodeled dynamics. The existing
methods can generally be broken down into two main cate-
gories: (1) iterative learning control (ILC) and (2) adaptive
FF control. ILC updates feedforward control input signals
based on data gathered from past iterations [16]. Hence, it can
learn and adapt to unmodeled dynamic behaviors. A major
advantage of ILC is that it does not require a parametric
model to operate, hence it can learn unmodeled dynamics
with an unknown structure. Besides, ILC can also be directly
incorporated with other controllers to adjust the reference
without changing the controller settings [17]. However, ILC’s
requirement of repeating trajectories or disturbances do not
apply to many practical scenarios, such as tracking control in
3D printing where motions are typically nonrepetitive due to
customization. Moreover, when the stability or convergence
is being analyzed, the broad knowledge of plant dynamics is

typically required [16]. Adaptive FF controllers, on the other
hand, tune the parameters of the controllers to account for
unmodeled or changing dynamics [18]–[23]. While there are
some adaptive FF controllers that must be tuned iteratively
using repeating trajectories or trials, e.g., [18], [20], [21],
literature has been exploring the approach to improve the
extrapolation performance of the iterative tuning process
[18], and besides not all adaptive FF controllers need this
requirement. However, a major shortcoming of adaptive FF
controllers is that they typically require a fixed structure with
associated parameters to be tuned online [18]–[23], despite
the fact that the stability properties can be obtained more
easily due to fixed structure. This diminishes their usefulness
in situations where the exact structure of the unmodeled dy-
namics is a priori unknown or changing, such as the unknown
aftermarket modification of 3D printers.

To handle both nonrepeating trajectories and the unmod-
eled dynamics with unknown or complex structure, neural
networks (NN) have also been incorporated into FF or other
controllers, due to their loose structure and ability to ap-
proximate any mathematical function [24]–[30]. However,
their high dimensional and nonlinear nature typically make
them difficult to be trained online or their stability to be
rigorously analyzed to ensure safe learning and control. As
a result, most existing works on NN-based controllers either
ignore the stability of the NN portion [24]–[28] or analyze
its stability under very strict conditions that are not validated
experimentally [29], [30].

As an alternative approach, the present authors have pro-
posed a hybrid (i.e., physics-guided data-driven) model for
servo systems entirely based on linear models [31]. In the
hybrid model, the output of a structured linear physics-based
model is fed into a loosely structured linear data-driven
model that is continuously updated online. It was shown
through simulations and experiments that, thanks to the
loose-structured data-driven component, the hybrid model
was able to learn unknown nonlinear dynamics and improve
overall model prediction compared to its purely physics-
based counterpart. A preliminary version [32] of the present
paper has incorporated the linear hybrid model into the FBF
approach, where it was shown in simulations that the result-
ing hybrid FBF controller could significantly improve the
tracking performance of a system with unmodeled nonlinear
dynamics. However, the preliminary investigation in [32]
failed to address two issues that are key to the practicality
of the hybrid FBF controller, namely: (1) how to handle the
delays in the data acquisition for the inputs to the data-driven
model, and (2) how to assess the stability of the hybrid FBF
controller due to the inherent feedback loop introduced by its
data-driven component. Moreover, the preliminary work did
not validate the effectiveness of the hybrid FBF controller in
experiments. To address these shortcomings, together with its
preliminary version [32], which is reviewed in Section II, the
original contributions of this paper are:

1) In Section II, proposing a physics-guided data-driven
FF tracking controller based on the FBF approach. The
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FIGURE 1. Overall framework of the linear hybrid model Gh [31].

FIGURE 2. Detailed mechanism of the data-driven portion of Gh [31].

proposed method, called the hybrid FBF controller,
is able to provide accurate tracking for systems with
unmodeled dynamics. Moreover, it is formulated to
account for measurement delays which can occur in
practice.

2) In Section III, proposing a rigorous stability analysis
approach that can detect impending instability of the
hybrid FBF controller due to training in order to avert
instability.

3) In Section IV, demonstrating the effectiveness of the
proposed hybrid FBF controller and stability analy-
sis methods in online and offline experiments on a
vibration-prone 3D printer with unmodeled linear and
nonlinear dynamics.

These contributions are followed by the conclusions and the
future work in Section V.

II. FORMULATION OF THE HYBRID FBF CONTROLLER
A. REVIEW OF THE LINEAR HYBRID MODEL
Consider a stable and causal SISO dynamic system H, which
is sampled at a constant interval Ts. The input and output of
H are respectively denoted by u(k) and y(k), where k =
0, 1, 2, . . ., is the time step sampled at the fixed interval Ts.
In addition, suppose that the inputs and outputs are generated
and measured in small batches. The signal in the j-th batch
is denoted by the superscript (j) and is defined, taking the
measured output y as an example, as the vector

y(j) ≜
[
y(jN), y(jN + 1), . . . , y((j + 1)N − 1)

]⊤
(1)

where N is the length of the small batches and j = 0, 1, 2, . . .
is the batch index.

For traditional FF tracking controllers, a physics-based
model Gpb, such as represented by a transfer function or a
lifted representation, is used to predict the response of H.

The controller then drives its prediction, denoted as ŷpb, to
be as close as possible to the desired trajectory yd. However,
when there exists unmodeled dynamics that are not captured
by Gpb, the inaccurate prediction of ŷpb can degrade the
performance of the controller.

To enhance the prediction accuracy of servo systems, the
authors have proposed a linear hybrid model [31]. As shown
in Fig. 1, the linear hybrid model Gh cascades a linear
physics-based model Gpb and a linear data-driven model
Gdd to output a more accurate prediction ŷh. More specif-
ically, Gdd aims to complement Gpb using past measured
data. To predict the output in the j-th batch, it takes the past
and current physics-based predictions, ŷ(j−1)

pb and ŷ
(j)
pb , as

well as the past measured output y(j−1) as inputs, i.e.,

ŷ
(j)
h = Gdd

(
ŷ
(j−1)
pb , ŷ

(j)
pb ,y

(j−1)
)

= Gdd

(
Gpbu

(j−1),Gpbu
(j),y(j−1)

)
= Gh

(
u(j−1),u(j),y(j−1)

) (2)

In more detail, Gdd is constructed based on a linear regres-
sion model, and its detailed structure is shown in Fig. 2. The
linear regression model estimates the physics-based model
prediction error epb ≜ y − ŷpb recursively for each time
step, which is then added to ŷpb to obtain the final hybrid
model prediction ŷh. Therefore, using Gh, ŷ(j)

h is computed
by recursively applying

ŷh(k) = ŷpb(k) + êpb(k) = ŷpb(k) + ŵ(j)⊤ϕ(k) (3)

for each time step k belongs to the the j-th batch, i.e., k ∈
{jN, jN + 1, . . . , (j + 1)N − 1}, where ϕ(k) is the
feature vector for the prediction of epb(k) and ŵ(j) is the
model weights trained with the data prior to the j-th batch.
Furthermore, the feature vector ϕ(k) is designed as

ϕ(k) =
[
1, ŷpb(k − q + 1), . . . , ŷpb(k),

epb(k − p), . . . , epb(k − 1)
]⊤ (4)

where q and p are design parameters representing the number
of ŷpb and epb terms included in ϕ, which can be decided
based on the system dynamics and the prediction horizon
[31], [32]. Besides, for all unavailable epb in Eq. (4), i.e.,
epb(k) for k ≥ jN , epb is replaced with the estimated
values êpb calculated from Eq. (3). On the other hand, ŵ(j) is
trained by minimizing the difference between epb and êpb for
all time steps prior to the j-th batch, through the following
regularized least squares optimization problem

ŵ(j) = argmin
w

jN−1∑
k=0

[epb(k)−w⊤ϕ(k)]2 + λ∥w∥22 (5)

where λ > 0 is a tunable regularization factor that prevents
overfitting. Besides, in practice, recursive least squares are
adopted to solve Eq. (5) to prevent increasing computational
expense as more data are collected [31], [32].
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Remark 1: Even though the hybrid model Gh is linear, it
is able to predict unmodeled nonlinear behavior by approxi-
mating it using the past measured data in a piecewise linear
fashion [31]. Moreover, though Gh is loosely parameterized
with q and p, it regresses on past prediction errors caused by
unmodeled dynamics, thus making it versatile in its represen-
tation of unmodeled dynamics using linear combinations of
past errors [31].
Remark 2: The recursive nature of Gh described in Eq. (3)
allows it to predict a system’s output with a prediction hori-
zon of arbitrary length or a prediction with multiple batches
ahead, despite the fact that the prediction accuracy drops
as the horizon expands in practice. For example, the hybrid
model prediction of (j + 1)-th batch can be formulated as

ŷ
(j+1)
h = Gdd

(
ŷ
(j)
pb , ŷ

(j+1)
pb , ŷ

(j)
h

)
= Gdd

(
ŷ
(j)
pb , ŷ

(j+1)
pb ,Gdd(ŷ

(j−1)
pb , ŷ

(j)
pb ,y

(j−1))
)

= Gdd,2

([
ŷ
(j−1)
pb

ŷ
(j)
pb

]
, ŷ

(j+1)
pb ,y(j−1)

)

= Gh,2

([
u(j−1)

u(j)

]
,u(j+1),y(j−1)

)
(6)

where Gdd,2 and Gh,2 respectively define the data-driven
and hybrid prediction models for two batches ahead.

B. DERIVATION OF HYBRID FBF CONTROLLER
As described in Sections I and II-A, the task of a FF tracking
controller is to minimize the error between the predicted
system response ŷ and the desired trajectory yd. Since the
performance of the FF controller is closely linked to the
accuracy of its prediction model, the linear hybrid model Gh

is more favorable than the physics-based model Gpb Thus,
Gh is applied to the receding horizon version of the standard
FBF approach [9] to enhance its tracking performance.

Since Gh is linear, according to Eq. (2) and Eq. (3),
the hybrid model prediction ŷ(j) can be expressed as linear
operation involving ŷ

(j−1)
pb , ŷ(j)

pb , and e
(j−1)
pb as

ŷ
(j)
h = Gdd

(
ŷ
(j−1)
pb , ŷ

(j)
pb ,y

(j−1)
)
= L

(j)
dd ·


1

ŷ
(j−1)
pb

ŷ
(j)
pb

e
(j−1)
pb

 (7)

where the L
(j)
dd matrix is constructed based on ŵ(j) [32] and

Eq. (7) can be further rewritten as follows

ŷ
(j)
h = L

(j)
dd,aŷ

(j)
pb + L

(j)
dd,uyŷ

(j−1)
pb + L

(j)
dd,uee

(j−1)
pb + L

(j)
dd,u1

(8)
where the matrices L(j)

dd,a, L(j)
dd,uy , L(j)

dd,ue, and L
(j)
dd,u1 are the

submatrices of L(j)
dd .

Although the prediction result in Eq. (8) may generate the
control input for the j-th batch, in practice, there are bound to
be delays between the end of batch j − 1 and the availability
of the data captured at batch j − 1. Therefore, y(j−1) (and

e
(j−1)
pb ) are not immediately available at the end of batch

j − 1, making the use of Eq. (8) impractical. To address
this problem, without loss of generality, suppose the delay in
acquiring y(j−1) is one batch length, i.e., the latest available
measurement is y(j−2) when optimizing the inputs for the j-
th batch. As described in Eq. (6), y(j−1) can be substituted
with ŷ

(j−1)
h . In other words, the hybrid prediction ŷ

(j)
h can

be rewritten as

ŷ
(j)
h = Gdd,2

([
ŷ
(j−2)
pb

ŷ
(j−1)
pb

]
, ŷ

(j)
pb ,y

(j−2)

)
(9)

Moreover, as discussed in [9] and in the preliminary work
[32], to ensure the continuity of the optimized input, an over-
lapping window, denoted by the superscript [j], is required; it
is defined as

y[j] ≜
[
y(jN), y(jN + 1), . . . , y(jN +Nw − 1)

]⊤
(10)

where Nw is the window length. Without loss of generality,
Nw in this paper is defined to be twice of the batch length N ,
i.e., Nw = 2N . Therefore, ŷ(j+1)

h also needs to be predicted
for control purposes and it can be expressed by

ŷ
(j+1)
h = Gdd,3


ŷ

(j−2)
pb

ŷ
(j−1)
pb

ŷ
(j)
pb

 , ŷ
(j+1)
pb ,y(j−2)

 (11)

Combining Eqs. (9) and (11), one can write the hybrid
model prediction in the j-th window, denoted by ŷ

[j]
h , as

ŷ
[j]
h =

[
ŷ
(j)
h

ŷ
(j+1)
h

]
= G

[j]
dd

([
ŷ
(j−2)
pb

ŷ
(j−1)
pb

]
,

[
ŷ
(j)
pb

ŷ
(j+1)
pb

]
,y(j−2)

)
(12)

where G
[j]
dd denotes the trained data-driven model used to

compute ŷ
[j]
h . Eq. (12) can be further expressed as a linear

operation, similar to Eq. (8), as

ŷ
[j]
h = L

[j]
dd,aŷ

[j]
pb + L

[j]
dd,uyŷ

[j−1]
pb + L

[j]
dd,uee

[j−1]
pb + L

[j]
dd,u1

(13)
where ŷ

[j]
pb , ŷ[j−1]

pb , and e
[j−1]
pb respectively represent

ŷ
[j]
pb =

[
ŷ
(j)
pb

ŷ
(j+1)
pb

]
, ŷ

[j−1]
pb =

[
ŷ
(j−2)
pb

ŷ
(j−1)
pb

]
, e

[j−1]
pb = e

(j−2)
pb

(14)
while L

[j]
dd,a, L[j]

dd,uy , L[j]
dd,ue, and L

[j]
dd,u1 here are constructed

based on ŵ(j−1) (due to the unavailability of y(j−1)) and can
be computed by replacing e

(j−1)
pb with (ŷ

(j−1)
h − ŷ

(j−1)
pb ) and

then comparing the coefficients of the linear operators.
To apply the prediction of Eq. (13) to the FBF approach,

ŷ
[j]
h needs to be expressed as a function of the control

inputs. Recall that the FBF approach formulates the control
inputs as the linear combination of a set of basis functions
with unknown coefficients, denoted as γ. Accordingly, the
term in Eq. (13) that is affected by the optimized inputs,
i.e., ŷ

[j]
pb , is represented as a function of γ. Furthermore,

when implemented in receding horizon, as in [9], ŷpb can
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FIGURE 3. Simplified diagram for the overall framework of the hybrid FBF approach.

be decomposed into past, current, and future portions with
respected to window j, i.e.,

ŷ
[j]
pb,P ≜

[
ypb(0), ypb(1), . . . , ypb(jN − 1)

]⊤
ŷ
[j]
pb,C ≜ ŷ

[j]
pb

ŷ
[j]
pb,F ≜

[
ypb(jN +Nw), ypb(jN +Nw + 1), . . . ,

]⊤
(15)

where P , C, and F respectively represent the past, current
and future. Accordingly, ŷpb is formulated asŷ

[j]
pb,P

ŷ
[j]
pb,C

ŷ
[j]
pb,F

 =

 Ψ̃P 0 0

Ψ̃PC Ψ̃C 0

Ψ̃PF Ψ̃CF Ψ̃F


γ

[j]
P

γ
[j]
C

γ
[j]
F

 (16)

where γ[j]
P , γ[j]

C , γ[j]
F represent the vectors of coefficients cor-

responding to past, current, and future windows, Ψ̃ matrices
represent the concatenation of the basis functions that are fil-
tered by Gpb, with the subscripts P , C, F of Ψ̃ denoting the
input-output effects in the past, current and future sections,
and the subscripts PC denoting the effects of the past inputs
on the current outputs, similarly for PF and CF . Also, note
that Ψ̃ is time-invariant when the batch length N is a multiple
of the number of time steps represented by one coefficient γ.

From Eqs. (15) and (16), ŷ[j]
pb is represented as a function

of γ by
ŷ
[j]
pb = Ψ̃Cγ

[j]
C + Ψ̃PCγ

[j]
P (17)

which is then inserted to Eq. (13). Replacing the unalterable
terms in Eq. (13), i.e., the terms from the past (ŷ[j−1]

pb and
e
[j−1]
pb ) and the bias term with Φ

[j]
u and concatenating their

linear operators as L[j]
dd,u, one can formulate ŷ

[j]
h as

ŷ
[j]
h = L

[j]
dd,aΨ̃Cγ

[j]
C + L

[j]
dd,aΨ̃PCγ

[j]
P + L

[j]
dd,uΦ

[j]
u (18)

Finally, the tracking error is minimized window by win-
dow [9]. Given a desired trajectory for the j-th window y

[j]
d ,

since γ
[j]
C is the only optimization variable, the objective

function is given by

min
γ

[j]
C

∥∥∥e[j]∥∥∥2
2

min
γ

[j]
C

∥∥∥y[j]
d − ŷ

[j]
h

∥∥∥2
2

(19)

Therefore, the optimal γ[j]
C for the hybrid FBF controller is

calculated as

γ
[j]
C =

(
L
[j]
dd,aΨ̃C

)† (
y
[j]
d − L

[j]
dd,aΨ̃PCγ

[j]
P − L

[j]
dd,uΦ

[j]
u

)
(20)

Then, as in [9], the optimized control input for the j-th batch
u(j) is reconstructed by the linear combination of the basis
functions, with only the first N time steps extracted, i.e.,

u(j) =
[
IN 0

] (
ΨCγ

[j]
C +ΨPCγ

[j]
P

)
(21)

After the optimized u(j) is fed to the system, and the
corresponding output y(j) is measured, the linear hybrid
model Gh is further updated by Eq. (5) using recursive least
squares algorithm, with additional epb(k) terms coming from

e
(j)
pb = y(j) − ŷ

(j)
pb

= y(j) −
[
IN 0

] (
Ψ̃Cγ

[j]
C + Ψ̃PCγ

[j]
P

) (22)

A flowchart for the hybrid FBF controller is shown in Fig. 3.
Remark 3: When the model weight ŵ of the linear hybrid
model Gh is set equal to zero, L[j]

dd,a and L
[j]
dd,u in Eq. (18)

will respectively become an identity matrix and a zero matrix,
thereby reducing the hybrid FBF approach to the standard
FBF method of [9]. Under this scenario, it can also be
inferred from Eq. (3) that ŷh = ŷpb.

III. STABILITY ANALYSIS FOR HYBRID FBF
CONTROLLER
Although the linear hybrid model can give more accurate pre-
diction [31] and accordingly lead to more accurate tracking
using the hybrid FBF controller, the hybrid FBF controller
may potentially suffer from instability due to the feedback
loop introduced by the regression on past data. More specif-
ically, according to Eq. (20), the feedback of the Φ

[j]
u term,

which includes the past outputs, may potentially cause the
overall closed-loop dynamics to become unstable. Further-
more, the varying values of the Ldd matrices in Eq. (20) due
to training can also affect the stability of the system.

Therefore, to ensure the safety of the controller, we pro-
pose an analytical approach to check the stability of the
system when using the hybrid FBF controller in this section.
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In particular, since the stability of the hybrid FBF controller
largely depends on the measured data from the past, which
is unknown in advance, the stability analysis proposed in this
section aims to check if there will be any risk of instability
for the next batch, given the current trained results of ŵ. In
practice, once impending instability is detected, a variety of
mitigating actions can be taken to prevent it. For example,
learning could be turned off, allowing the system to revert
to the standard FBF controller, to use the model weights
before the instability happens, or to run in a safe mode using
conservative speed and acceleration.

To perform the stability check, we assume that the linear
hybrid model has converged to accurate predictions, and thus
the rate of weight changes due to updating is sufficiently low.
This assumption is reasonable because, in practice, the hybrid
model should be adequately trained for a few cycles to ensure
that it is sufficiently accurate before using it for control.
Given this assumption, the general idea of the stability check
method is to write the linear hybrid model in the state-
space format as the approximation of the actual system, i.e.,
approximating y = ŷh , and then formulating the input to
the system as a control feedback law utilizing the hybrid
FBF controller. That is, the linear hybrid model, described
in Eq. (13), and the hybrid FBF controller, formulated as
Eq. (20), are rewritten into the form of

x[j+1] = A[j]x[j] +B[j]u[j]

u[j] = K[j]x[j] +M[j]r[j]
(23)

where the input vector u[j] and the reference vector r[j]

are represented by the FBF coefficients γ
[j]
C and the desired

trajectory y
[j]
d , respectively. For the design of the state vector,

x[j], based on Eqs. (13), (14) and (17), ŷpb and ŷh from
(j − 2)-th to j-th batch, as well as γ[j]

P and the bias term must
be included. Accordingly, x[j], u[j], and r[j] are designed as

x[j] =
[
ŷ
(j−2)
h

⊤
, ŷ

(j−1)
h

⊤
, ŷ

(j)
h

⊤
,

ŷ
(j−2)
pb

⊤
, ŷ

(j−1)
pb

⊤
, ŷ

(j)
pb

⊤
, γ

[j]
P

⊤
, 1
]⊤ (24a)

u[j] = γ
[j]
C

⊤
=
[
γ(j)⊤, γ(j+1)⊤

]⊤
(24b)

r[j] = y
[j]
d =

[
y
(j)
d

⊤
, y

(j+1)
d

⊤
]⊤

(24c)

Furthermore, by comparison of the linear operators of
Eq. (23) with that of Eqs. (13), (17), (18), and (20), the
matrices A[j], B[j], K[j], and M[j] are given by

A[j] =



0 IN 0 0 0 0 0 0
A21 0 0 A24 A25 0 A27 A28

A31 0 0 A34 A35 0 A37 A38

0 0 0 0 IN 0 0 0
0 0 0 0 0 0 A57 0
0 0 0 0 0 0 A67 0
0 0 0 0 0 0 A77 0
0 0 0 0 0 0 0 0


(25)

B[j] =
[
0 B⊤

2 B⊤
3 0 B⊤

5 B⊤
6 B⊤

7 0
]⊤

(26)

K[j] =
[
K1 0 0 K4 K5 0 K7 K8

]
(27)

M[j] = (L
[j]
dd,aΨ̃C)

† (28)

where IN are N-by-N identity matrices, 0 are zero matrices
with appropriate size, and the submatrices Aij , Bij , and Kij

are defined as follows:[
A21

A31

]
= L

[j]
dd,ue,

[
A28

A38

]
= L

[j]
dd,u1,[

A24

A34

]
= L

[j]
dd,uy

[
IN
0

]
− L

[j]
dd,ue,[

A25

A35

]
= L

[j]
dd,uy

[
0
IN

]
,[

A27

A37

]
= L

[j]
dd,aΨ̃PC ,

[
B2

B3

]
= L

[j]
dd,aΨ̃C ,[

A57

A67

]
= Ψ̃PC ,

[
B5

B6

]
= Ψ̃C ,

A77 =

[
0 Inp−nc

0 0

]
, B7 =

[
0 0
Inc 0

]
,

Ki = −(L
[j]
dd,aΨ̃C)

†
[
A2i

A3i

]
(for i = 1, 4, 5, 7, 8) (29)

where np and nc are the sizes of γ[j]
P and γ

[j]
C , respectively.

Finally, despite the fact that the matrices, A[j], B[j], K[j]

and M[j], can vary with respect to time due to the training,
based on the assumption that the linear hybrid model is
converging, the overall dynamics described in Eq. (23) can
be assumed to be a slow linear time-varying system before
instability happens due to the low rate of weight changes
(validated in Section IV-E), and thus the closed-loop dy-
namics can be approximated as a linear time-invariant (LTI)
system. Accordingly, based on LTI stability analysis, it can be
determined that the hybrid FBF controller is unstable when
the closed-loop state matrix (A[j]+B[j]K[j]) has eigenvalues
outside the unit disk. Hence, instability is predicted to occur
in the next batches when the spectral radius (i.e., largest
absolute eigenvalue) exceeds 1.

IV. APPLICATION TO 3D PRINTING
In this section, the proposed hybrid FBF controller and
stability analysis approach are validated experimentally on
a desktop 3D printer.

A. BACKGROUND
Desktop 3D printers are typically made of lightweight ma-
terial and are driven by stepper motors through belts. As a
result, they experience unwanted vibration during printing,
leading to a loss of printed part quality. A standard FBF con-
troller, with no data-driven component, has been successfully
used to compensate the unwanted vibration, enabling high-
speed printing while maintaining high print quality [9], [15].
However, the physics-based model used in the standard FBF
controller does not capture the nonlinear vibration behavior

6 VOLUME 10, 2022

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3244194

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Chou et al.: A Physics-guided Data-driven Feedforward Tracking Controller for Systems with Unmodeled Dynamics

FIGURE 4. The printer and controller setup used for the experimental case
studies (the 200 g mass is added for case study 2 and 3 only).

FIGURE 5. Comparison of the FRF of the identified model, the measured
FRFs from the unmodified printer (no added mass) using different amplitudes
of sine sweeps, and (for x-axis only) the measured FRF from the retrofitted
printer (with 200 g mass added)

of desktop 3D printers, e.g., due to nonlinear friction, back-
lash, and belt stiffness. Moreover, 3D printers wear over time,
and it is not unusual for end-users to perform aftermarket
modifications to their desktop printers, e.g., adding a new
nozzle or installing a webcam, thus altering the printers’
dynamics in unknown ways. The standard FBF approach
is unable to handle these unmodeled dynamics. However,
next-generation desktop 3D printers are being equipped with
low-cost accelerometers that can measure vibration. In the
following subsections, we explore the effectiveness of the
hybrid FBF controller to leverage data gathered from on-
board accelerometers to compensate unmodeled vibration
dynamics of a desktop 3D printer.

B. EXPERIMENTAL SETUP
Figure 4 shows the experimental set up. It consists of a
Creality Ender 3 Pro desktop 3D printer. A 200 g mass can
be attached to the printer’s x-axis to simulate an aftermarket
modification to the printer (e.g., the installation of a heav-
ier printhead or a webcam). Two low-cost accelerometers
(Adafruit ADXL335) are attached to the printer’s x- and y-
axis to collect acceleration signals, which are converted to
position signals using a Luenberger observer with a band-
width of 5 Hz, where the low frequency components rely

more on the identified model and the high frequency compo-
nents on the measured accelerations. All control algorithms
tested on the printer are implemented on dSPACE DS1107
and dSPACE DS5203 FPGA board at fixed sampling rates
of 1 kHz (for control) and 40kHz (for data collection and
stepper motor command generation). The stepper motor com-
mands are delivered to the printer’s motors using DRV8825
stepper motor drivers.

As shown in Fig. 4, the x-axis of the printer is the extruder
while the y-axis is the print bed, so the two axes can be seen
as independent dynamics. Figure 5 shows the printer’s x- and
y-axis frequency response functions (FRFs). The plot shows
the FRFs measured at varying input acceleration amplitudes
without the 200 g mass added to the printer. Due to the
nonlinear dynamics of the printer, the FRFs vary significantly
with the input amplitude. Also shown is a linear transfer
function model fit using the measured FRFs for each axis.
The identified transfer functions for the x- and y-axes are
given by

Gpb,x =
b5s

5 + b4s
4 + b3s

3 + b2s
2 + b1s+ b0

s6 + a5s5 + a4s4 + a3s3 + a2s2 + a1s+ a0

Gpb,y =
d6s

6 + d5s
5 + d4s

4 + d3s
3 + d2s

2 + d1s+ d0
s7 + c6s6 + c5s5 + c4s4 + c3s3 + c2s2 + c1s+ c0

(30)

where

b5 = −62.48, a5 = 242.6,

b4 = 5.91× 104, a4 = 1.36× 105,

b3 = 3.82× 106, a3 = 1.73× 107,

b2 = 2.96× 109, a2 = 4.22× 109,

b1 = 1.96× 1011, a1 = 2.75× 1011,

b0 = 2.29× 1013, a0 = 2.29× 1013,

d6 = −84.79, c6 = 211.2,

d5 = 2.87× 104, c5 = 2.56× 105,

d4 = −8.03× 106, c4 = 4.11× 107,

d3 = 6.45× 109, c3 = 2.07× 1010,

d2 = 3.86× 1011, c2 = 2.39× 1012,

d1 = 3.29× 1014, c1 = 5.28× 1014,

d0 = 3.74× 1016, c0 = 3.74× 1016.

Notice that the fit FRF, which is used to generate the
physics-based model Gpb used in the standard and hybrid
FBF controllers, does not model the nonlinear amplitude-
dependent behavior of the FRFs. Instead, it only models
the average of all measured FRFs, with larger weighting
on the lower-frequency portion, which is more common
for most trajectories and is the main signal source of the
identified model for the observer. As a result, in addition
to the amplitude-dependent behavior, the fit FRF and the
measured FRFs may also have larger deviation at higher
frequency trajectories. Also shown on the x-axis plot is an
FRF measured when the 200 g mass is added to x-axis.
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TABLE 1. The controller parameters of the standard and the hybrid FBF used
for the experimental case studies.

Sampling rate 1 kHz (for control)
40 kHz (for data transmission)

Observer bandwidth 5 Hz
Accelerometers low-pass cutoff freq. 200 Hz
B-spline degree 5
B-spline knot vector spacing 10 time steps (= 0.01 s)
N (batch length) 70 time steps (= 0.07 s)
Nw (window length) 140 time steps (= 2N )
q (number of ypb terms in ϕ) 4
p (number of epb terms in ϕ) 50
λ (regularization factor) 0.01

FIGURE 6. The (a) desired shape for case study 1 (i.e., Part A) and the
comparison of the quality of parts printed at (b) low speed and (c) high speed
using different controllers. (The numbers show the mean width a and its
standard deviation of the parts from 10 measured values, in mm.)

Notice that this modification causes the printer’s FRF to
further deviate from the modeled FRF. Two case studies that
evaluate the effectiveness of the hybrid FBF controller in
handling these unmodeled dynamics are described below.
A third case study evaluates the stability of the controller.
The control parameters used in the three case studies are
summarized in Table 1.

C. CASE STUDY 1: EVALUATION OF HYBRID FBF
CONTROLLER ON UNMODIFIED PRINTER
This case study aims to show the quality improvement of 3D
printed parts using the hybrid FBF controller on the printer of
Fig. 4 without the 200 g mass added. The unmodeled dynam-

FIGURE 7. Comparison of the x-axis tracking error using different controllers
for (a) low-speed and (b) high-speed printing for case study 1.

ics are therefore due to the nonlinear amplitude-dependent
behavior shown in Fig. 5. Part A, shown in Fig. 6(a), is
printed without compensation and with compensation using
the standard and hybrid FBF controllers. The part consists of
linear and sine-wave motions. The sine wave motions have a
wavelength of 0.5 mm. Therefore, when traversing the sine
wave, the x-axis vibrates at a frequency proportional to the
feed rate of the printer, and the frequency of the sine wave
can be obtained by: frequency = (y-axis speed)/wavelength.

Figure 6(b) and (c) show the results of Part A with the
sine wave printed at low speed (i.e., 10 Hz) and high speed
(i.e., 35 Hz) without compensation, and with compensation
using the standard and hybrid FBF controllers. The width a
shown in Fig. 6(a) is used as a figure of merit. It is obtained
by measuring 10 different locations of the printed parts using
a vernier caliper and computing the mean and the standard
deviation as summarized in Fig. 6(b) and (c). At low speed,
all three prints have similar quality, as shown by their similar
mean values of a. This is because, as seen from Fig. 5, at
10 Hz, the resonance of the machine is not excited, and
there is hardly any vibration to compensate. Moreover, the
nonlinear behavior of the machine is not prevalent. However,
at 35 Hz, the qualities of the parts are markedly different.
The mean width of the parts printed without compensation
and with compensation using the standard FBF controller are
respectively 19.17% and 4.93% larger than their low-speed
counterparts due to uncompensated vibration. The standard
FBF controller does a poor job because it is unable to com-
pensate the unmodeled nonlinear vibration around 35 Hz.
However, the hybrid FBF controller does a much better job
at compensation, leading to only 0.29% error of mean value
of a at high speed compared to at low speed.

The performance of using the hybrid FBF controller can
also be observed from the time history of the tracking error.
Here, the estimation of the observer is treated as the true
position of the printer. Figure 7 compares the tracking error
of the parts printed without compensation and with com-
pensation using the standard and hybrid FBF controllers. At
low speed, as shown in Fig. 7(a), the standard and hybrid
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FIGURE 8. The (a) desired shape for case study 2 (i.e., Part B) and the
comparison of the print quality using different controllers printed at (b) low
speed and (c) high speed

FBF controllers have similar levels of tracking error, while
that of the uncompensated is larger. At high speed, Fig. 7(b)
shows that the uncompensated and the standard FBF control
cases both have significantly larger tracking errors than the
hybrid FBF controller beyond the warm-up period, where the
standard FBF controller are used in place of the hybrid FBF
controller to allow Gdd to be fully trained with sufficient
data. The overall root mean square (RMS) tracking error
between the uncompensated, standard FBF, and hybrid FBF
are respectively 143.3, 74.7, and 73.2 µm for low speed
printing and 702.6, 358.6, and 129.8 µm for high-speed
printing. Again, this confirms the superior performance of the
hybrid FBF controller in compensating unmodeled nonlinear
vibration.

D. CASE STUDY 2: EVALUATION OF HYBRID FBF
CONTROLLER ON RETROFITTED PRINTER

In this case study, Part B shown in Fig. 8(a) is printed on
the 3D printer in Fig. 4 with the 200 g mass added. As
shown in Fig. 5, the added mass leads to significant mismatch
between the modeled and actual x-axis dynamics. Part B is
printed without compensation, and with compensation using
the standard and hybrid FBF controllers at low speed (i.e., 25
mm/s wall speed) and high speed (i.e., 100 mm/s wall speed).
The feed rate (other than the wall speed), acceleration, and

FIGURE 9. Comparison of the x-axis tracking error using different controllers
for (a) low-speed and (b) high-speed printing for case study 2.

jerk limits for both speed settings are respectively:

vlim = 100mm/s, alim = 10m/s2, jlim = 5000m/s3 (31)

As shown in Fig. 8(b), at low speed, the quality of the
part is similar for all three cases. However, at high speed, as
shown in Fig. 8(c), there is a loss of quality on the “Y” face
of the cube due to unmodeled x-axis vibration. The loss of
quality is severe without compensation. Its severity is slightly
reduced using the standard FBF controller. However, the
hybrid FBF controller significantly reduces the loss of quality
thanks to its ability to leverage data gathered from the on-
board accelerometers to learn the unmodeled dynamics. Note
that the loss of quality in the high-speed case is not perfectly
compensated by the hybrid FBF controller. One reason is
that the compensation using the hybrid model is based on
the position signals observed from acceleration signals using
the modeled FRF in Fig. 5, which can be highly inaccurate
after retrofitting the printer. This limitation, however, could
be alleviated if the position signals are gathered directly from
a position sensor. Another reason is that the training of the
key feature, i.e., the “Y” letter notch, is diluted by other parts
of the shape that do not have the same geometric pattern. This
problem can be addressed by performing more intelligent
training updates of Gdd using features with similar geometric
patterns.

Similar to Case Study 1, the quantitative tracking perfor-
mance of the hybrid FBF is shown in the time history plots
of the tracking error in Fig. 9. As shown in Fig. 9(a), at
low speed, the uncompensated case has some spikes in the
tracking error, which are compensated by both the standard
and the hybrid FBF. These spikes of tracking error occur
mostly in the high-speed infill (interior) printing, and thus are
not reflected on the surface quality of the printed part shown
in Fig. 8(b). However, for high-speed printing, Fig. 9(b)
shows that the uncompensated cases have large tracking
error at almost every instant. The standard FBF can slightly
compensate it, while the hybrid FBF can further improve the
compensation of the standard FBF after the warm-up section.
The overall RMS tracking error between the uncompensated,
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FIGURE 10. The desired shape and the x-axis trajectory (the axis containing
instability) for Case Study 3.

FIGURE 11. The x-axis (a) control trajectory, (b) measured acceleration, (c)
training results, and (d) stability analysis results for Case Study 3.

standard FBF, and hybrid FBF are respectively 146.6, 77.5,
and 80.1 µm for low speed printing and 265.5, 140.3, and
99.2 µm for high-speed printing.

E. CASE STUDY 3: VALIDATION OF THE STABILITY
ANALYSIS METHOD
No stability issues were encountered in executing the two
case studies reported above. Therefore, in this section, a
special case study is created to trigger instability and evaluate
the ability of the proposed stability analysis approach to
detect the impending instability in advance. Figure 10 shows
the motion trajectory used in this case study. It is a hollow
square shape that is 3-layer-thick and 15-layer-high. The feed
rate, acceleration, and jerk limits used are respectively:

vlim = 60mm/s, alim = 3m/s2, jlim = 6000m/s3 (32)

Figure 11 shows the control trajectories, measured ac-
celeration, the training results (i.e., the model weights for
Gh), and the stability analysis results for this case study.
The hybrid FBF controller is warmed up for 5.5 s at the
beginning of the motion as it begins to be applied to vibration
compensation thereafter. However, at time t ≈ 11.5 s, the

controller becomes unstable, which outputs diverging control
trajectory (due to skipping steps, the actual control command
stops) and leads to a sudden spike in acceleration and in some
of the trained model weights. Using the stability analysis
approach proposed in Section III, which in this case study is
performed offline using data gathered online from the x-axis
accelerometer, this instability can be detected in advance by
the spectral radius approaching unity at t = 10.7 s, just before
the instability sets in. This gives the controller a 0.8 s lead
time to take mitigating measures to avert instability.

From this case study, it is notable that, the calculation
of the eigenvalues can be computationally expensive due
to the large size of (A[j] + B[j]K[j]). Hence, in practice,
if the computational resources are limited but no stability
issue is tolerable, the model could also be updated task by
task. For example, in 3D printing, the same weights could
be used throughout the whole printing part. After the current
printing task is finished, they are updated offline, checked for
stability, and used for the next printing task. Otherwise, with
sufficient computational resources, such as utilizing parallel
computing, the stability assessment can also be implemented
online to detect the impending instability and take mitigating
actions, e.g., by switching off the hybrid controller and
switching to a safe mode known to be stable (such as the
standard FBF controller with a conservative printing speed to
ensure the quality).

V. CONCLUSION AND FUTURE WORK
This paper has proposed a physics-guided data-driven con-
troller, called the hybrid filtered basis functions (hybrid FBF)
controller, for feedforward tracking control of systems with
unmodeled dynamics. In contrast with the standard FBF con-
troller that uses only a fixed physics-based model, the hybrid
FBF controller consists of a fixed physics-based model and a
varying data-driven model that is continuously updated dur-
ing the execution of the controller to account for unmodeled
dynamics. The effect of delays due to data acquisition are
incorporated into the formulation of the data-driven portion
of the controller to enhance its practicality. Moreover, given
that the hybrid FBF controller has an inherent feedback loop
that could lead to instability and unsafe learning during its
operation, a rigorous stability analysis method is proposed to
enable the detection and aversion of impending instability.

The performance of the hybrid FBF is demonstrated ex-
perimentally using two case studies involving the compen-
sation of the tracking errors of a vibration-prone desktop
3D printer with unmodeled linear and nonlinear dynamics.
In both cases, the hybrid FBF controller is shown to sig-
nificantly outperform the standard FBF controller, particu-
larly in high-speed printing where the effects of unmodeled
dynamics are prominent. Moreover, in the third case study,
the proposed stability analysis approach is evaluated offline
using accelerometer data collected online from the desktop
3D printer. The proposed approach is shown to be able to
detect impending instability in advance, allowing time for
mitigating measures to be taken to avert instability. This
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bodes well for the practicality of the hybrid FBF controller,
as it facilitates the safe implementation of the controller.

There are deficiencies of the hybrid FBF controller that
will be addressed in future work. For example, in the second
case study involving a retrofitted 3D printer, the hybrid FBF
controller had some unresolved quality issues on the printed
objects partly due to inconsistent learning from portions
of the printed part with different geometries and vibration
behaviors. This deficiency could be solved by creating mul-
tiple data-driven models for different geometric features and
operating conditions. Another opportunity for future work is
to explore learning from one system to another, e.g., across a
network of 3D printers. This would likely involve the use of
privacy-preserving federated learning [33].
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