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A B S T R A C T

Servo error pre-compensation (SEP) is commonly used to improve the accuracy of feed drives. Existing SEP
approaches often involve the use of physics-based linear models (e.g., transfer functions) to predict servo
errors, but suffer from inaccuracies due to unmodeled nonlinear dynamics in feed drives. This paper proposes
a linear hybrid model for SEP that combines physics-based and data-driven linear models. The proposed
model is shown to approximate nonlinearities unmodeled in physics-based linear models. In experiments on
a precision feed drive, the proposed hybrid model improves the accuracy of servo error prediction by up to
38% compared to a physics-based model.
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1. Introduction

A wide range of manufacturing machines use feed drives powered
by computer numerical control (CNC) to generate motion commands
[1]. The accuracy of feed drives significantly affects the quality of the
parts produced by manufacturing machines. Servo errors are a major
source of inaccuracy in feed drives. When caused by motion com-
mands, servo errors can often be reduced by pre-compensation (i.e.,
feedforward compensation). A model of the machine’s servo dynam-
ics is used to modify motion commands offline or online in the CNC
interpolator to reduce servo errors.

Examples of servo error pre-compensation (SEP) methods include
zero phase error tracking controller [2], inverse compensation filter [3],
input shaper [4], model reference feedforward control [5], hierarchical
predictive control [6], trajectory pre-filter [7] with friction compensator
[8], and filtered B-splines [9,10]. These methods often involve the use of
transfer functions of feed drive dynamics to predict and compensate
servo errors. Sometimes, the parameters of the transfer functions are
tuned online using data collected from the feed drives [7,8].

A major shortcoming of using transfer function models for SEP is
that they cannot incorporate nonlinearities. A common practice to alle-
viate this issue is to pre-emptively cancel out nonlinearities from sys-
tem dynamics using models of nonlinear dynamics (e.g., friction)
[5,7,8,11,12]. However, in several practical cases, the nonlinearities are
unknown or do not have reliable models, hence they cannot be can-
celed out completely. For example, the nonlinear stiffness of a feed
drive’s cable carrier may be unknown, or the nonlinear friction in a
feed drive’s bearings may be poorly modeled. Another issue with non-
linear feed drive models, when available, is that they are not amenable
to many SEP approaches which depend on linear models, e.g., [2�10].
The idea of hybrid modeling, where physics-based models are
combined with data-driven (machine learning) models is gaining a
lot of attention [13,14]. One benefit of hybrid modeling is that data,
which is becoming abundant, can be used to complement physics-
based models. This paper proposes a hybrid model to enable more
accurate SEP of feed drives with unmodeled nonlinear (and linear)
dynamics. In the proposed approach, the predictions of a linear phys-
ics-based model (e.g., derived from transfer function) are fed into a
linear data-driven model to achieve a linear hybrid model. It is shown
analytically and numerically that, though linear, the proposed hybrid
model is able to approximate nonlinearities that are unmodeled by
the physics-based model. As a result, it is able to more accurately pre-
dict servo errors, which is a pre-requisite for accurate SEP using lin-
ear models. Experiments carried out on a vibration-prone precision
feed drive with unmodeled nonlinear dynamics demonstrate up to
38% improvement in servo error prediction accuracy using the pro-
posed hybrid modeling approach compared to a standard physics-
based model.

The outline of the paper is as follows: In Section 2, the proposed
hybrid model is presented. In Section 3, analytical and numerical case
studies are used to demonstrate how the proposed linear hybrid model
approximates unmodeled nonlinearity in feed drives. A precision feed
drive with a vibrating fixture and unmodeled nonlinear dynamics is
presented in Section 4 and used to experimentally validate the benefits
of the proposed hybrid model in accurately predicting servo errors. This
is followed by conclusions and a discussion of future work in Section 5.

2. Proposed hybrid model for SEP

Assume that the stable SISO servo dynamics, H, of a feed drive, is
broken down into a linear portion (HL) which is accurately modeled
and a nonlinear portion (HNL) which is unmodeled, as shown in Fig. 1.
Let xdðkÞ and xðkÞ represent discrete values of the desired and actual
positions of the feed drive, where k = 0, 1, 2, . . . are the discrete time
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Fig. 1. General framework of the proposed hybrid model.
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steps with a sampling interval Ts. Assume that the CNC interpolator of
the feed drive has look-ahead capabilities such that the desired trajec-
tory, xd, is fed to the feed drive in small batches, defined as the vector

x
jð Þ
d ¼Δ xd jNp

� �
; xd jNp þ 1

� �
; . . . ; xd jþ 1ð ÞNp � 1

� �� �T
; ð1Þ

where Np is the length of the look-ahead window, j = 0, 1, 2, . . . is the
batch index. Let x(j) denote the output position corresponding to xd

(j).
In standard SEP, a physics-based linear model, Gpb, is typically used
to predict x(j) as

bx jð Þ
pb ¼Δ bxpb jNp

� �
;bxpb jNp þ 1

� �
; . . . ;bxpb jþ 1ð ÞNp � 1

� �� �T

¼ Gpb x
jð Þ
d ; ð2Þ

where the subscript pb indicates that the prediction bxpb
(j) is obtained

using Gpb , a matrix (lifted) representation of a linear system. However,
since Gpb does not capture HNL, using Gpb may result in inaccurate SEP.
To address this deficiency, H is modeled using a linear hybrid model (as
shown in Fig. 1), Gh, which combines the physics-based linear model,
Gpb, and a linear data-drivenmodel,Gdd. The goal ofGh is to return accu-
rate predictions x̂h

(j) of x(j) based on current and past inputs, xd
(j) and

xd
(j�1), as well as past measured output x(j�1). This is achieved by defining

bx jð Þ
h

¼D Gdd bx jð Þ
pb; bx j�1ð Þ

pb ; x j�1ð Þ
� �

¼ Gdd Gpb x
jð Þ
d ; Gpb x

j�1ð Þ
d ; x j�1ð Þ

� �

¼ Gh x
jð Þ
d ; x

j�1ð Þ
d ; x j�1ð Þ

� �
; ð3Þ

where Gdd is a data-driven model which learns the residual error of
Gpb and then refines its prediction by using as its inputs the outputs
of the physics-based model combined with the past output data mea-
sured from the feed drive. The accurate predictions x̂h

(j) of the pro-
posed hybrid model can be used online in a windowed (limited-
preview) approach [10] for SEP.

In order to keep the overall model linear to facilitate SEP, Gdd is
built on a linear regression model. Fig. 2 shows the internal structure
of Gdd. Let epb

(j) be defined as the prediction error of Gpb (i.e., epb
(j)

D
¼ x

(j) � x̂pb
(j)). Accordingly, linear regression is used to determine

êpb
(j) (the prediction of epb

(j)) as a function of epb
(j�1), x̂pb

(j), and x̂pb
(j�1)

by recursively applying the following formula

x̂h kð Þ ¼ x̂pb kð Þ þ êpb kð Þ ¼ x̂pb kð Þ þ ŵ jð ÞTf kð Þ; ð4Þ
Fig. 2. Internal structure of the data-driven model (Gdd).
where k 2 fjNp; . . . ; ðjþ 1ÞNp � 1g, i.e., the time steps defined within
batch j; ŵ(j) is the weight of the regression model for batch j, while
f kð Þ is the pre-defined feature vector for the regression model. For
each time step k, it is defined as
f kð Þ ¼ 1; x̂pb kð Þ; . . . ; x̂pb k� qð Þ; epb k� 1ð Þ; . . . ; epb k� pð Þ� 	T
: ð5Þ

Here, q < Np and p � Np are design parameters, where q + 1 and p
represent the number of time steps in x̂pb and epb in the regressor.
Notice from Fig. 2 that only the past values of epb ði.e., epb(j�1)Þ are
available, meaning that in Eq. (5), epbðkÞ is unavailable for k�jNp .
Therefore, for k�jNp, epbðkÞ is replaced with êpbðkÞ D

¼ x̂hðkÞ � x̂pbðkÞ: In
Eq. (4), ŵ is updated recursively for each batch using recursive least
squares algorithm to minimize the sum of square errors at all time
steps with the following loss function:

ŵ jð Þ ¼ argmin
w

XjNp�1

k¼0
epb kð Þ � wTf kð Þ� 	2 þ λ kw k 2

2; ð6Þ

where λ > 0 is a constant regularization factor added to prevent over-
fitting.

3. Analytical justification and numerical validation

3.1. Analytical justification for hybrid model

The hybrid model’s capability to approximate unmodeled nonlin-
ear servo dynamics is analytically explained in this section. Consider
a feed drive with servo dynamics H given by

z kþ 1ð Þ ¼ Az kð Þ þ Bxd kð Þ þ Gx2d kð Þ;
x kð Þ ¼ Cz kð Þ; ð7Þ

where, xd and x are the desired and actual positions of the feed drive,
respectively, while z is the vector of internal states; A, B, C and G are
system matrices. Notice that, as a simple example but without loss of
generality, H contains an unmodeled, input-dependent nonlinear
term, Gx2d kð Þ. Assume that the system is stable, and the linear portion
of the servo dynamics (i.e., matrices A, B, C) is accurately modeled.
Then, given zero initial conditions, the system output xðkÞ is written as

x kð Þ ¼ CAk�1Bxd 0ð Þ þ CAk�1Gx2d 0ð Þ þ⋯þ CBxd k � 1ð Þ

þ CGx2d k � 1ð Þ: ð8Þ

Eq. (8) can be concatenated into matrix form as

x 1ð Þ
x 2ð Þ
x 3ð Þ
..
.

2
66664

3
77775 ¼

CB 0 0 ⋯
CAB CB 0 ⋯
CA2B CAB CB ⋯

..

. ..
. ..

.
⋱

2
6664

3
7775

xd 0ð Þ
xd 1ð Þ
xd 2ð Þ

..

.

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
x̂pb

þ

CG 0 0 ⋯
CAG CG 0 ⋯
CA2G CAG CG ⋯

..

. ..
. ..

.
⋱

2
6664

3
7775

x2d 0ð Þ
x2d 1ð Þ
x2d 2ð Þ

..

.

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
epb

:

ð9Þ

Since the linear part of the system is modeled by the physics-
based model, the first matrix product represents x̂pb. Therefore, the
second matrix product, epb, is re-written as

epb 1ð Þ
epb 2ð Þ
epb 3ð Þ

..

.

2
66664

3
77775 ¼

CG 0 0 ⋯
CAG CG 0 ⋯
CA2G CAG CG ⋯

..

. ..
. ..

.
⋱

2
6664

3
7775

x2d 0ð Þ
x2d 1ð Þ
x2d 2ð Þ

..

.

2
666664

3
777775: ð10Þ

From Eq. (10), epbðkÞ can be seen as a linear combination of the
terms CG, CAG, . . ., CAk�1G, while the nonlinear inputs x2d at each
time step are the corresponding weights. Moreover, since the system
is stable, we assume that CAnG � 0 for n greater than or equal some
value p. Put differently, epbðkÞ is the linear combination of CG, CAG,
. . ., CAp�1G, while its p previous inputs are the weights. Accordingly,
at any time step k, if the sequences of the nonlinear inputs, i.e.,
{x2dðk� 1Þ,x2dðk� 2Þ, . . . x2dðk� pÞ}T, are linearly related to the past
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sequences {x2dðk� 2Þ, x2dðk� 3Þ, . . . x2dðk� p� 1Þ}T, {x2dðk� 3Þ,
x2dðk� 4Þ, . . . x2dðk� p� 2Þ}T, . . ., then future values of epb can be
approximated by linear combinations of past values of epb. Therefore,
by including past values of epb in the linear regressor of Eq. (5), future
values of the prediction error caused by similar unmodeled nonline-
arity can be approximated.

Remark: Even though the unmodeled dynamics is assumed to be
square inputs above, the analysis can also be generalized to other sys-
tem- or input-dependent, linear or nonlinear terms of time-invariant
systems, as long as responses can be approximated by series expan-
sion and then reformatted as in Eq. (10).

3.2. Numerical validation of hybrid model

To further support our analysis in Section 3.1, consider a feed
drive whose linear servo dynamics HL is represented by the spring-
mass-damper model shown in Fig. 3, combined with an unmodeled
nonlinear dynamic force HNL. The equation of motion of the feed drive
is expressed as

m€x þ c _xþ kxþ HNL ¼ kxd þ c _xd; ð11Þ
where m ¼ 1 kg, c ¼ 15:7 kg=s, and k ¼ 24674 N=m. The linear sys-
tem has a resonance mode at 25 Hz with 5% damping ratio. Assume
that HNL (in Newtons) is defined as

HNL ¼ 0:1 sgn _xð Þ _x2 þ 1 sgn xð Þ x2: ð12Þ
The nonlinear force could arise from uncancelled nonlinear damp-

ing from guideways or nonlinear stiffness from a cable carrier
attached to the feed drive’s table. As a result of HNL, the dynamics of
the feed drive becomes nonlinear as

m€x þ ðcþ 0:1j _xjÞ _xþ ðkþ jxjÞx ¼ kxd þ c _xd: ð13Þ
Simulations are conducted with xd tracking a staircase position

trajectory shown in Fig. 4(a) where the feed drive travels from 0 to
30mm and then goes back to 0mm in increments of 10mm. The
velocity, acceleration and jerk limits of the desired position trajectory
are respectively set as follows:

Fmax ¼ 80 mm=s;Amax ¼ 8 m=s2; and Jmax ¼ 1;000 m=s3: ð14Þ

Fig. 3. Model of feed drive servo dynamics used for numerical study.
Fig. 4. (a) Desired staircase trajectory; and (b) comparison of servo position prediction
errors of Gpb (green line) and Gh (black line). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Experimental setup-biaxial motion stage with a flexible fixture [9].

Fig. 6. Measured and modeled frequency response functions of X and Y axes of the
experimental setup [9].
The physics-based model, Gpb, is obtained from Eq. (11) with HNL

¼ 0; i.e., not capturing the nonlinearity. It is used to determine x̂pb. To
obtain the hybrid model (Gh), the actual position x of Eq. (13) is used,
with some Gaussian noise e»Nð0 mm; 0:0052 mm2Þ added. The
parameter q of Gh is set as 3 so that it implicitly includes up to the
jerk information of the desired trajectory. The parameter p is set to
50, as half of the look ahead window size Np = 100. The sampling
interval is Ts = 1ms. For each batch j of xd

(j), the hybrid model is used
to determine x̂h

(j), the Np time steps ahead prediction of x(j).
Fig. 4(b) compares the prediction errors of the physics-based and
the hybrid models. Note that during the initialization period marked
in the figure, which is arbitrarily set as 5% of the whole trajectory, x̂h
= x̂pb, to give the hybrid model some time to get trained before being
used for prediction. Otherwise, the performance of Gh in early batches
may be worse than that of Gpb. Beyond the initialization period, the
proposed hybrid model is more accurate than the physics-based
model because of its ability to approximate HNL from data. The root
mean squares (RMS) of the servo position prediction error of the
hybrid model is 14.7mm, which is 56.4% smaller than that of the
physics-based model (33.7mm).
4. Experimental validation on precision feed drive

Experimental results are presented in this section to compare the
accuracy of the proposed hybrid model to a physics-based model in
predicting servo errors of a feed drive.

4.1. Experimental setup and physics-based modeling

The biaxial linear motor-driven stage (Aerotech ALS 25010)
shown in Fig. 5 is used for the experiments. The same stage was used
in [9] to demonstrate SEP using the filtered basis functions (FBS)
method. The stage is controlled using a traditional P/PI feedback con-
troller, augmented with velocity and acceleration feedforward and
feedforward friction compensation. The controller is implemented on
a dSPACE 1103 real-time control board with 1 kHz sampling fre-
quency (i.e., Ts = 1ms). As shown in Fig. 5, the stage is equipped with
a fixture consisting of a block mounted on a rod. The block is assumed
to represent an apparatus (e.g., a workpiece or measurement device)
whose X and Y positions are expected to track their respective desired
trajectories, xd and yd accurately, despite inherent structural flexibil-
ities. The acceleration of the fixture is measured using two unidirec-
tional accelerometers (PCB Piezotronics 393B05) shown in Fig. 5.
Fig. 6 shows the frequency response function (FRF) of the servo
dynamics of each axis of the stage, generated by applying swept sine
acceleration commands to the stage and measuring the accelerations
of the fixture using the accelerometers. As discussed in [9], the linear
servo dynamics of the stage with fixture for each axis is represented
by the following physics-based model of a vibrating system
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GpbðsÞ ¼
XM
i¼1

ai þ bis
s2 þ 2zivn;isþ v2

n;i

; ð15Þ

where M = 4 represents the number of vibration modes and the other
system parameters, identified by curve fitting the FRFs, are presented
in Table 1 for each axis. More details are available in [9]. In addition
to the identified linear dynamics, the stage has unmodeled nonlinear
dynamics, like the stiffness of the stage’s cable carriers and acceler-
ometer cables, and residual nonlinear friction that was uncancelled
by the friction compensation.
Table 1
Model parameters of Gpb(s) for X and Y axes of stage [9].

Axis-Mode# vn,i [Hz] zi ai bi

X-1 20.52 0.092 15,797.5 54.3
X-2 34.94 0.540 �135,160.6 �587.7
X-3 42.53 0.029 189,225.5 �60.5
X-4 42.60 0.007 14,633.4 �67.9
Y-1 17.86 0.120 6,709.0 310.4
Y-2 25.70 0.021 42,872.2 169.4
Y-3 30.66 0.440 �43,178.2 �1260.2
Y-4 43.10 0.036 �966.3 7.5
4.2. Experimental results

The stage is commanded to track the spiral path shown in Fig. 7 by
following jerk-limited position commands xd and yd having velocity,
acceleration and jerk limits given in Eq. (14). The identified Gpb(s) is used
to determine the predicted position x̂pb and ŷpb for the X and Y axes,
respectively, of the physics-based model. To obtain the data-driven
model (Gdd) used in the hybridmodel (Gh), the actual position of the flex-
ible fixture is estimated from measured acceleration signals using an
observer. For Gh, a look-ahead window length of Np = 100, together with
q = 3 and p = 50, are used, as also employed and described in Section 3.
Fig. 7. Desired path: Circular spiral.
Fig. 8 shows the X and Y axes servo position prediction errors using
the physics-based model and the proposed hybrid model for the spiral
path shown in Fig. 7. As discussed in Section 3, during the initialization
period, x̂h = x̂pb is used to give the hybrid model some time to warm
up before being used for prediction. The RMS of the X and Y axes pre-
diction errors of the proposed hybrid model are 13.7mm and 94.5mm,
which are respectively 38% and 27% more accurate than those of the
physics-based model (i.e., 22mm and 130.2mm). However, Fig. 8 also
shows that the hybrid model does not perform as well at the end of
the motion when the stage is decelerating. This is because the hybrid
model has not seen nor been trained by similar motion earlier. Also,
Fig. 8. Prediction errors of Gpb (green line) and Gh (black line) for the circular spiral
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.).
for the Y axis, the hybrid model does not capture the error spikes very
well. This is because the spikes occur sparsely throughout the trajec-
tory, meaning that the weights of the spikes in the training objective
are relatively low. Nonetheless, the hybrid model is never overall less
accurate than the physics-based model throughout the trajectory.

5. Conclusion and future work

This paper has proposed a linear hybrid model that combines phys-
ics-based and data-driven models to capture unmodeled nonlinearity
in feed drive servo dynamics. The input to the proposed hybrid model
is first filtered through the physics-based model to give a rough pre-
diction, which is then refined by a linear data-driven model using past
data acquired from the feed drive. Accordingly, the proposed hybrid
model significantly improves the predictions of the physics-based
model when the trajectory shows similar nonlinearity, as demon-
strated analytically, numerically, and experimentally in this paper.

The accuracy of the hybrid model can be further improved by hav-
ing weights that vary for different regions of a trajectory, e.g., differ-
ent weights at locations of spikes in Fig. 8 than the rest of the
trajectory. This would require an intelligent approach for segmenting
the trajectory into portions with similar features during the training
process. Such an approach will be explored in future work. Moreover,
future work will also include a determination of the uncertainty of
Gh and optimization of the initialization period as a function of the
uncertainty. Lastly, the proposed linear hybrid model will be inte-
grated into online SEP methods in future work.
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