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Flexible aircraft designs with high aspect ratio wings and light-weight structures are in-

creasingly adopted to achieve improved fuel efficiency. To design a controller for a flexible

aircraft, a low-order model of its dynamics that captures the aeroelastic behavior is needed.

One approach to establishing such a low-ordermodel is to extend the 6-degree-of-freedom rigid

aircraft model with additional elastic states. However, most of the existing models along these

lines are based on simplified aerodynamicsmodels (e.g., experimentally corrected aerodynamic

coefficients), which limits the applicability of such low-order models in early design stages. In

this work, a semi-analytical model of flexible aircraft is established through the combination

of the dynamics of elastic body and the numerical linearization of high-order structure and

aerodynamics models. The proposed model is derived in the body-fixed axes formulation, rep-

resents full flight dynamics (both longitudinal and lateral), and preserves the physical meanings

for the states and all the derived terms. Static residualization is also adopted to enhance the

model accuracy with limited number of elastic states. Using the proposed approach, low-order

semi-analytical models are exemplified for different complexity aircraft representations and

verified against the corresponding nonlinear high-order models.

Nomenclature

�V) , �[) = matrices linking the vector of thrust force �T to {�>thrust, "
>
thrust}

>, and &thrust

�V0, �[0 = aerodynamic forces on the rigid-body and flexible states at a selected trim condition,

normalized by @̄

�VV , �V[ , �V ¤[ , �VX = linearization coefficients of {�>aero, ">aero}>, normalized by @̄

�̄VV , �̄V[ , �̄V ¤[ , �̄VX = low-dimension modifications of �VV , �V[ , �V ¤[ , �VX considering residualization

�[V , �[[ , �[ ¤[ , �[X = linearization coefficients of &aero, normalized by @̄
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�̄[V , �̄[[ , �̄[ ¤[ , �̄[X = low-dimension modifications of �[V , �[[ , �[ ¤[ , �[X considering residualization

�: = matrix linking change of [ to 4:

4: , 40,: = vector of :th thrust force direction with and without aircraft deformation

� (G), 5� (G), 6� (G) = complete nonlinear dynamics satisfying � (G) ¤G = 5� (G) + 6� (G)D

F�, F� = body-fixed and inertial reference frames

�T, �T,: = vector of scalar thrust forces and its :th element, N

�Frame = translational force components due to F� movement (similar definitions for �Relative,

�Euler, �Coriolis, �Centripetal, �Ext, �g, �thrust, �aero), N

6, 6ℎ = gravitation vector in F� and gravitational constant as a function of altitude, m·s−2

� ([), �8 ([) = matrix linking ¥[ to "Relative and its 8th column, N·m·s2

�
(0)
8

, a8 9 = zeroth-order and first-order coefficients of �8 ([), N·m·s2

�� ([), � (0)� = inertia matrix of deformed and undeformed aircraft, kg·m2

� ([, ¤[) = matrix linking 2l to "Coriolis, N ·m · s · rad−1

" ,  = modal mass and stiffness matrix

"Frame = rotational moment components due to F� movement (similar definitions for "Relative,

"Euler, "Coriolis, "Centripetal, "Ext, "g, "thrust, "aero), N·m

"V , "[ = aerodynamics coefficient modification matrices due to residualization

< = mass of the aircraft, kg

=, =T = numbers of elastic modes and the thrust forces (engines)

$�, $ � = origins of F� and F�

?, @, A = roll, pitch, and yaw rates in F�, rad/s

&Frame = generalized force for flexible states due to F� movement (similar for &Relative, &Euler,

&Elastic, &Coriolis, &Centripetal, &Ext, &g, &thrust, &aero)

@̄, @̄t = dynamic pressure and its trimmed value where aerodynamic linearization is acquired,

Pa

'(q, \) = transformation matrix between the rates of Euler angles and l

r�/� , r%/�, r%/� = vectors from point � to �, � to %, and � to %, m

A� , A�0 = positions of center of mass of the deformed and undeformed aircraft in F�, m

AE,: , AE0,: = displacement of :th engine with and without aircraft deformation, m

A% , A%0 , 4%0 = deformed, undeformed position of Point % and their difference in F�, m

) = rotation matrix between F� and F�

D = vector of combined control inputs {�T
>, X>}>, N and rad
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v, � E, �E (E) = aircraft velocity vector and its projection in F� and F�, m/s

EG , EH , EI = forward, lateral, and vertical speed in F�, m/s

G, Gt = state vector including rigid-body and flexible states and its trimmed value

V, Vt ,ΔV = combination of the translational and rotational rigid-body states, the trimmed value

where aerodynamic linearization is acquired, and their difference, m/s and rad/s

Γ8 , Π8 9 = first- and second-order terms of �� ([) with respect to [, kg·m2

X, Xt ,ΔX = control surface deflections, its trimmed value, and the deviation from the trim condition,

rad

[, [8 = vector of elastic states and the 8th element

[s, [d = vectors of the selected and discarded elements of [

[C , Δ[ = trimmed [ and the deviation from the trim

Λ, Λ8 = matrix linking [ to the change of center of mass and its 8th column, m

d = altitude dependent air density, kg/m3

q, \, k = Euler angles, rad

k8 = 8th mode shape, m

Ω0, Ω = sets of undeformed and deformed points

8, l = angular velocity vector and its projection in F�, rad/s

s (subscript) = selected modes in the residualization process

d (subscript) = discarded modes in the residualization process

I. Introduction

In the pursuit of cost and emission reduction, modern aircraft increasingly adopt high aspect-ratio wings and lightweight

structures, yielding a more flexible aircraft (FA) design. The FA design enhances the structural and aerodynamics

efficiency, but poses challenges for modeling and control. Conventional controller designs use a six-degree-of-freedom

(6-DOF) rigid aircraft model corrected by aerodynamic flex-to-rigid ratio and with filters to suppress the elastic modes.

In FA, a more direct handling of flexible modes must be taken into account; not accounting for flexible modes often

leads to low-performance controllers [1] and more severe safety issues (e.g., flutter instability) [2, 3]. On the other

hand, high-order models of FA [4, 5], which combine the finite element models, aerodynamic models, and rigid-body

dynamics, typically have hundreds or thousands of states, and it is challenging to use them for controller design [6]. The

use of high-order models in controller design may also lead to high-order control systems that require unrealistically

high-performance or high-bandwidth actuators [7]. Therefore, to facilitate controller design, low-order flexible aircraft

models that capture the coupling of structural dynamics, aerodynamics, and rigid-body dynamics are needed.
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The low-order models are typically obtained using one of two approaches. The top-to-bottom approach involves

the use of model order reduction methods (e.g., balanced truncation [6, 8], genetic algorithms [9], Krylov-based

reduction [10], etc.). This numerical approach allows for a great control of the level of approximation and the size

of the final model. The top-to-bottom approaches can deal with significant complex dynamic models and have been

successfully implemented in industry to model aeroelastic systems [11, 12]. However, the physical meanings of the

states and physics-based model structure may be lost in the model reduction process [13]. Furthermore, the available

procedures are effective for developing linear parameter varying models but are less effective for the development of

models which account and include nonlinearities and reflect the effects of physical parameter variations [14]. These

potential issues may complicate the controller design and tuning process (e.g., matching/interpolating models across

different regions, observer design, etc.) of physical parameter variations and suffer from scalability challenges [14].

On the other hand, the bottom-to-top approach adds representations for the effects of flexibility on top of the analytical

6-DOF rigid aircraft model and thus preserves the physical meaning of the states and physics-based model structure. It

yields an analytic or semi-analytical model, which can be conveniently reduced to a classical rigid aircraft dynamics

model. It is this latter, bottom-to-top approach, the focus of the present paper with the motivation to provide low-order

models for controller and observer designs.

The existing methods to incrementally integrate the flexible aircraft dynamics into the model are categorized based

on the reference frames adopted. Early investigations of Milne [15], Canavin, and Linkins [16] exploited the concept of

mean axes, which defines an orthogonal axis system with the origin at the instantaneous center of mass of the deformed

body. The mean axes are oriented in a way that the free vibration modes are decoupled from the rigid-body translational

and rotational motion, and thus inherited the structure of rigid aircraft models in an elegant way [2, 17]. Schmidt [18]

proposed methods to characterize the elastic effects on aerodynamics forces and moments using analytical potential-flow

aerodynamics coefficients. As Meirovitch and Tuzcu [19] pointed out, although the use of mean axes decoupled the

inertial dynamics, the coupling effect is passed to the aerodynamic loads, which may complicate the computations.

Accordingly, another commonly adopted reference frame is a body-fixed frame which has its origin at a fixed point

in the aircraft. In this setting, the instantaneous center of mass is not at a constant location and the inertia tensor

varies. Although the equations of motion are not inertially decoupled, the use of body-fixed axes permits to include

the effect of the elastic deformations on the first- and second-mass moments of inertia, thereby potentially producing

more accurate results [20]. Along these lines, Meirovitch and Tuzcu [21] followed a Lagrangian formulation used a

body-fixed reference frame (referred to as "pseudo-body axes" frame) and incorporated the aerodynamics from strip

theory. D’Eleuterio and Barfoot [22] used a similar energy-based approach which is applicable to general elastic bodies.

Gibson et al. [23] proposed a flexible aircraft model where the dihedral angles are used to represent the flexible states.

Avanzini et al. proposed a mixed Newtonian-Lagrangian approach [7] to derive the equations of motion and employed

the methodology to develop a simplified FA dynamics model [24]. Building on these existing work, researchers have
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also identified the scenarios where the structure deformation shows significant geometrical nonlinearity [5]. Aircraft

with these geometrical nonlinear deformations are referred to as very flexible aircraft (VFA). Compared to FA, VFA

typically has large deformation amplitudes, and the geometrical nonlinearity hinders the linear structural analysis [25].

The VFA modeling and control are significantly different from FA; this work focuses on the control-oriented modeling

of FA.

The existing methods typically rely on simplified aerodynamics models (e.g., strip theory), which may not be

satisfactory for accuracy and performance [19]. This paper builds on the bottom-to-top approach in the body-fixed

axis setting and establishes a semi-analytical FA model exploiting the structural and aerodynamic linearizations of

high-order models, such as in NASTRAN or in the University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox

(UM/NAST). The main contributions of the paper include deriving the full-flight semi-analytical FA model, developing

an approach to extract the aerodynamics from high-order models, and processing linearization modifications to enhance

accuracy and numerical stability. The proposed semi-analytical FA model is verified with a general transport aircraft

(GTA) [26] and Airbus XRF1 flexible aircraft.

The paper is organized as follows: The body-fixed equations of motion of FA in the body-fixed frame are derived

in Section II. The extraction of structural and aerodynamics information from high-order models, as well as the

modifications to enhance accuracy and numerical stability, are discussed in Section III. The simulation case studies of

flexible aircraft GTA and XRF1 models are detailed in Section IV. The conclusion and future work are discussed in

Section V.

II. Semi-Analytical Low-Order Model of Flexible Aircraft
Consider an FA with mass <, an inertial frame F� with origin $ � , and a body-fixed frame F� with origin $�

(arbitrary point, but usually set as the aircraft undeformed center of mass), as illustrated in Figure 1. Note that the

deformation of the FA is exaggerated to highlight the deformation (such large deformation are typically categorized

as very flexible aircraft). The frame F� is chosen in agreement with the North-East-Down (NED) flight mechanics

orientation, and is related to frame F� by a 3-2-1 Euler angle rotation sequence (defined by Euler angles q, \, and k).

The rotation matrix ) is defined as

) =



2(k)2(\) 2(k)B(q)B(\) − 2(q)B(k) B(q)B(k) + 2(q)2(k)B(\)

2(\)B(k) 2(q)2(k) + B(q)B(k)B(\) 2(q)B(k)B(\) − 2(k)B(q)

−B(\) 2(\)B(q) 2(q)2(\)


(1)

where B(·) and 2(·) designate sin(·) and cos(·) functions. The rotation matrix Eq. (1) converts the coordinates in F� to

the ones in F� . For example, with the velocity of the aircraft is defined as v = � 3
3C

r�/� , its representations in F� (i.e., � E)
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and in F� (i.e., �E) satisfy the following relationship

(� E) = ) (�E). (2)

In this work, a vector is projected onto F� frame without extra specification, e.g., E = �E = {EG , EH , EI}> where EG , EH ,

and EI represent the forward, lateral, and vertical speed in F� frame.

For an arbitrary point % on the aircraft, the vectors representing its position in reference frame F� and F� are written

as r%/� and r%/�, respectively. They satisfy the following relationship,

r%/� = r%/� + r�/� , (3)

where r�/� is the inertial position of the vehicle (i.e., relative to the origin $ � of F� ). Since, the body-fixed frame

is extensively used, a simplified convention is adopted for vectors are expressed in F� (i.e., r% = r%/�). The time

derivatives with respect to reference frames F� and F� are denoted as
� 3
3C

and
�3
3C
, and they are linked through the

transport theorem as
� 3

3C
v =

�3

3C
v + 8 × v, (4)

where 8 is the angular velocity of F� with respect to F� . We use ¤v and ¥v as compact forms for
�3
3C

v and
�32

3C2
v. The

roll, pitch, and yaw rates are defined as ?, @, and A, i.e., l = {?, @, A}>. The cross product is written as a matrix

multiplication by a skew-symmetric matrix (e.g., � (8 × v) � l̃E). The skew-symmetric matrix l̃ is defined as

l̃ =



0 −A @

A 0 −?

−@ ? 0


. (5)

This definition of a skew-symmetric matrix applies to an arbitrary vector and and skew-symmetric matrices satisfy the

properties l̃> = −l̃ and l̃E = −Ẽl. Note that the evolution of the Euler angles can be determined from

� 3

3C



q

\

k


=



1 B(q)C (\) 2(q)C (\)

0 2(q) −B(q)

0 B (q)
2 (\)

2 (q)
2 (\)

︸                            ︷︷                            ︸
' (q,\)



?

@

A


(6)

where '(q, \) designates the transformation matrix.
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Fig. 1 Inertial and body-fixed reference frames. A typical very flexible aircraft configuration is used here just
to simplify the visualization of the reference frames.

A. Equations of Motion

Flexible aircraft (FA) have moderate levels of flexibility and their structural dynamics can be characterized using

linear modal analysis. Unlike VFAwhere the defomration displacement show significant nonlinearity, in FA formulations,

the position vector of an arbitrary point A% is decomposed into the undeformed position A%0 and the elastic deformation

4%0 as

A% = A%0 + 4%0 = A%0 +
=∑
8=1

k8 (%0) [8 , (7)

where k8 (%0) is the 8th displacement mode shape at point %0, [8 is the modal amplitude of the 8th mode, and = is the

number of selected modes. Define Ω0 and Ω to be the sets of undeformed and deformed points. Then the changes in
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the position of the center of mass due to deformation can be expressed as a linear function of the modal amplitudes, i.e.,

A� = A�0 +
=∑
8=1
Λ8[8 = A�0 + Λ[,

Λ8 =
1
<

∫
%0∈Ω0

k8 (%0) 3<,
(8)

where A�0 is the position vector of the undeformed center of mass�0, Λ8 links the 8th modal amplitude to the deformation

of the center of mass, Λ = [Λ1,Λ2, ...,Λ=] and [ = {[1, [2, ..., [=}>.

The equation of motion for a point mass <% in reference frame F� is written as

<%

©­­­­«
� 32

3C2
A�/�︸    ︷︷    ︸

Frame

+ ¥A%︸︷︷︸
Relative

+ ¤̃lA%︸︷︷︸
Euler

+ 2l̃ ¤A%︸︷︷︸
Coriolis

+ l̃2A%︸︷︷︸
Centripetal

ª®®®®¬
= �% , (9)

where �% is the external force applied to the point mass. Note that acceleration terms are categorized into different

classes: the inertial term due to the moving frame F� is denoted as “Frame”; the inertial term relative to frame F�

is denoted as “Relative”; the other terms are Euler, Coriolis, and centripetal terms. The integration of Eq. (9) with

corresponding multipliers yields the translation, rotation, and elastic equations of motion for the FA. This classification

of acceleration terms is crucial as it leads all the following decomposition of translational, rotational, and flexible terms.

The multipliers for translation, rotation, and elastic equations are 1, Ã% , and k>8 , respectively.

The translation EOM is written as

�Frame + �Relative + �Euler + �Coriolis + �Centripetal = �Ext, (10)

where �Ext represents the integral of the external forces applied to the FA, while �Frame, �Relative, �Euler, �Coriolis, and

�Centripetal represent the integrals of corresponding terms in Eq. (9). These latter terms, by exploiting Eq. (8), are derived

as

�Frame =

∫
%∈Ω

(
� 32

3C2
A�/�

)
3< = <

� 3

3C
E = < ( ¤E + l̃E) , (11)

�Relative =

∫
%∈Ω

¥A%3< = <Λ ¥[, (12)

�Euler =

∫
%∈Ω

¤̃lA%3< = −<Ã� ([) ¤l, (13)

�Coriolis =

∫
%∈Ω

2l̃ ¤A%3< = 2<l̃Λ ¤[, (14)
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�Centripetal =

∫
%∈Ω

l̃2A%3< = <l̃2A� ([) . (15)

Although the corresponding force terms in Eqs. (10) to (15) are derived for FA (assuming linear structural modal

decomposition), its formulations can be used to evaluate the VFA related dynamics effects and potential error from

the geometrical nonlinearity. For example, the center of mass A� ([) is an affine function of [ for FA (assuming linear

structural mode decomposition). Possible modeling errors may arise from this assumption of linear modes, particularly

when FA increases flexibility towards VFA. To quantify this modeling error, an error function 4A2 ([) is defined, marking

the deviation of a nonlinear A� ([) (extracted from a high-order model) from the affine relationship defined in Eqs. (8).

This deviation is typically small with small [, and gradually increases with larger [. Note from Eqs. (10) to (15)

that this error function 4A2 ([) directly links to the force estimation error that this model introduced due to the linear

structural modes assumption. On the other hand, this error function 4A2 ([) also helps establish the admissible domain

of simulation (bounds on the flexible states [ in simulation.

Similarly, integrating Eq. (9) with multiplier Ã% , yields the rotational EOM,

"Frame + "Relative + "Euler + "Coriolis + "Centripetal = "Ext (16)

where "Ext is the external moment applied to the FA using � as the reference point. The terms "Frame and "Relative are

given by

"Frame =

∫
%∈Ω

(
Ã%

� 32

3C2
A�/�

)
3< = <Ã� ([) ( ¤E + l̃E), (17)

"Relative =

∫
%∈Ω

(Ã% ¥A%)3< = � ([) ¥[, (18)

where � ([) = [�1 ([) , �2 ([) , ..., �= ([)]. Each term �8 ([) (8 = 1, 2, ..., =) is affine in [ and cam be expressed in the

form,

�8 ([) = � (0)8 + a8 9[ 9 , (19)

where

�
(0)
8
=

∫
%0∈Ω0

Ã%0k8 (%0) 3<,

a8 9 =
∫

%0∈Ω0

(
k̃ 9 (%0) k8 (%0)

)
3<.

(20)
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From Eq. (20), it follows that a8 9 = −a 98 . The term "Euler is given by

"Euler =

∫
%∈Ω

Ã% ¤̃lA%3< = �� ([) ¤l, (21)

where �� ([) = −
∫

%∈Ω
Ã% Ã%3< is the inertia matrix, whose elements are second-order polynomials in [ as

�� ([) = � (0)� +
(
Γ8 + Γ>8

)
[8 + Π8 9[8[ 9 . (22)

The term �
(0)
�

= −
∫

%0∈Ω0

(
Ã%0 Ã%0

)
3< in Eq. (22) is the inertia matrix of the undeformed aircraft, and Γ8 and Π8 9 are

given by

Γ8 = −
∫

%0∈Ω0

Ã%0 k̃8 (%0) 3<,

Π8 9 = −
∫

%0∈Ω0

k̃8 (%0) k̃ 9 (%0) 3<.
(23)

Due to the properties of the skew-symmetric matrices, it follows that Π>
8 9
= Π 98 . The term "Coriolis is given by

"Coriolis =

∫
%∈Ω

2Ã%l̃ ¤A%3< = 2� ([, ¤[) l, (24)

where

� ([, ¤[) =
(
Γ8 + Π 98[ 9

)
¤[8 . (25)

The term "Centripetal is given by

"Centripetal =

∫
%∈Ω

Ã%l̃l̃A%3< = l̃�� ([) l, (26)

where the right hand side is obtained from the property of the cross product (D̃1D̃2D̃2D1 = −D̃2D̃1D̃1D2) which holds for

arbitrary vectors D1 and D2.

The flexible EOM is derived similarly, through the integration of Eq. (9) with multiplier k>
8
. The dynamics of the

8th mode is given by

&Frame,8 +&Relative,8 +&Elastic,8 +&Euler,8 +&Coriolis,8 +&Centripetal,8 = &Ext,8 . (27)

The terms &Frame,8 and &Relative,8 are given by

&Frame,8 =

∫
%∈Ω

k>8

(
� 32

3C2
A�/�

)
3< = <Λ>8 ( ¤E + l̃E), (28)
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&Relative,8 =

∫
%∈Ω

k>8 ¥A%3< = "8 9 ¥[ 9 , (29)

where "8 9 is the element of modal mass matrix " defined as

"8 9 =

∫
%∈Ω

k>8 k 93<. (30)

Similarly, define  8 9 as the element of the modal stiffness matrix  . Then, the elastic terms are given by

&Elastic,8 =  8 9[ 9 . (31)

Based on the definitions of �8 ([), a8 9 , Γ̄8 , and Π̄8 9 in Eqs. (19), (20) and (23), it follows that &Euler,8 , &Coriolis,8 , and

&Centripetal,8 are given by

&Euler,8 =

∫
%∈Ω

k>8 ¤̃lA%3< = �>8 ([) ¤l, (32)

&Coriolis,8 =

∫
%∈Ω

2k>8 l̃ ¤A%3< = 2l>a8 9 ¤[ 9 , (33)

&Centripetal,8 =

∫
%∈Ω

k>8 l̃
2A%3< = −l> (Γ>8 + Π8 9[ 9 )l. (34)

Similar modeling error nonlinear functions due to the linear assumption are also quantifiable following the error function

establishment procedure of 4A2 ([) for the rotational EOM and flexible EOM. More specifically, � ([), �� ([), and

� ([, ¤[) are the terms that can be extracted to establish in a more general form can be extracted from high-order models.

In comparison with the linear definitions, corresponding error functions 4� ([), 4�� ([), and 4� ([, ¤[) can be established.

Similar to the establishment of 4A2 ([), the error due to linear assumption or the bounds of the flexible states can be

established with these error functions.

B. Forces and Moments

The external forces, moments, and generalized forces are categorized into gravity, thrust, and aerodynamics

components:

�Ext = �g + �thrust + �aero,

"Ext = "g + "thrust + "aero,

&Ext,8 = &g,8 +&thrust,8 +&aero,8 .

(35)
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1. Gravity Forces and Moments

The gravity related terms �g, "g, and &g,8 are given by

�g = <6,

"g =
∫

%∈Ω
(Ã%6)3< = <Ã� ([)6,

&g,8 =
∫

%∈Ω

(
k>
8
6
)
3< = <Λ>

8
6,

(36)

where 6 is the gravity constant vector pointing to the earth. According to the transformation matrix defined in Eq. (1), 6

in F� is given by 6 = )−1{0, 0,−6ℎ}>, in which the gravity constant 6ℎ is a function of the altitude.

2. Thrust Forces and Moments

Assume unit vector 40,: and 4: (: = 1, 2, ..., =T) represent the thrust force directions of =T engines without and with

deformation, respectively. Unlike in rigid aircraft where 40,: = 4: , thrust force direction 4: in FA models is a function

of [. For small deformations, the rotations due to different modes are additive so that

4: = 40,: + �:[, (37)

where

�: = [=̃:,140,: , =̃:,240,: , ..., =̃:,=40,: ], (38)

and where =:,8 is the rotation vector at the :th engine location due to unit-amplitude 8th mode. Define the thrust force of

the :th engine as �T,: . Then the total thrust force and moment are expressed as

�thrust =

=T∑
:=1

�T,:4: , (39)

"thrust =

=T∑
:=1

�T,: ÃE,:4: . (40)

The vector AE,: represents the :th engine’s displacement in the deformed configuration given by

AE,: = AE0,: +
=∑
8=1

k8 (�: ) [8 , (41)
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where k8 (�: ) is the 8th mode shape at the :th engine location. The generalized thrust forces which appear in the

dynamic equations for flexible states are calculated as

&thrust,8 =

=T∑
:=1

�T,:4: ·
mAE,:

m[8
=

=T∑
:=1

�T,:4
>
:k8 (�: ). (42)

In vector format, �T = {�T,1, �T,2, ..., �T,=T }> and the thrust force, moment, and generalized forces are given by


�thrust

"thrust

 = �V) �T,
&thrust = �[) �T,

(43)

where

�V) =


41 42 ... 4=T

ÃE,141 ÃE,242 ... ÃE,=T4=T

 , (44)

�[) =



4>1 k1 (�1) 4>2 k1 (�2) ... 4>=Tk1
(
�=T

)
...

... ¥
...

4>1 k= (�1) 4>2 k= (�2) ... 4>=Tk=
(
�=T

)

. (45)

3. Aerodynamics Forces and Moments

This semi-analytical FA model exploits the linearization of high-order models to obtain characterizations of

aerodynamics forces and moments. Define the vector of the rigid body states V = {E>, l>}> as the combination of the

translation and rotation velocity states and let X aggregate the inputs from all control effectors.

The aerodynamics force and moment are then written as


�aero

"aero

 = @̄(�V0 + �VVΔV + �V[Δ[ + �V ¤[ ¤[ + �VXΔX),

&aero = @̄(�[0 + �[VΔV + �[[Δ[ + �[ ¤[ ¤[ + �[XΔX),

(46)

where �V0 and �[0 represent the normalized aerodynamic forces affecting the rigid and flexible states at a selected trim

condition, where the dynamic pressure @̄ = d | |E | |2
2 (with d being the altitude-dependent air density) is introduced as the

normalization factor. When perturbed from this selected trim condition, the aerodynamics are assumed to follow a
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linear relationship around the selected trim point, where

ΔV = V − Vt,

Δ[ = [ − [t,

ΔX = X − Xt

(47)

are the deviations from the corresponding trim condition values of Vt, [t, and Xt. As shown in Eq. (46), their sensitivity

coefficients to the rigid states (i.e. �VV , �V[ , �V ¤[ , and �VX) and to the flexible states (i.e. �[V , �[[ , �[ ¤[ and �[X) are

defined with @̄ normalization as well. Note that more practical flexible aircraft implementation may require multiple

trim points and more complex aerodynamics models. To account for these models, interpolation of the linear models or

even nonlinear surrogate models can replace the simplified aerodynamics model in Eq. (46). Under those scenarios, the

coefficients shown in Eq. (46) can be interpreted as the local linearizations of a more complex model to account for the

aeroelastic analysis and the aerodynamic linearization matching method discussed in Section III.B.

C. Summary of the Equations of Motion

Let the state vector G aggregate the rigid body states, flexible states, Euler angles, and the position of the body-fixed

frame, i.e.

G = {V>, [>, ¤[>, q, \, k, AB/I
>}>, (48)

and let the =D-dimensional control input D aggregate the thrust forces and the control surface deflections, i.e.

D = {�T
>, X>}>. (49)

Based on all the dynamics terms calculated in this section, the flexible aircraft dynamics are represented as

� (G) ¤G = 5� (G) + 6� (G)D (50)
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where

� (G) =



<� −<Ã� ([) 0 <Λ 0 0

<Ã� ([) �� ([) 0 � ([) 0 0

0 0 � 0 0 0

<Λ> �> ([) 0 " 0 0

0 0 0 0 � 0

0 0 0 0 0 �



, (51)

5� (G) =



−<l̃E − 2<l̃Λ ¤[ − <l̃2A� ([) + <6 + �aero | X=0

−<Ã� ([)l̃E − 2� ([, ¤[) l − l̃�� ([) l + <Ã� ([)6 + "aero | X=0

¤[

− [ − <Λ>l̃E −&Coriolis −&Centripetal + <Λ>6 + &aero | X=0

'(q, \)l

)E



, (52)

and

6� (G) =



�V) @̄�VX

0=×=D

�[) @̄�[X

06×=D


. (53)

III. Structural and Aerodynamics Information from High-Order Models
It is assumed that the structural modes k8 (8 = 1, ..., =) are acquired from the high-order models such as NASTRAN

and UM/NAST. Note that k8 is the displacement-based mode shape, and other type of mode shapes (e.g. strain-based

mode shapes in UM/NAST) should be converted to displacement mode shape with linear transformation matrices. This

linear transformation is possible due to the linear deformation assumption in flexible aircraft [23]. The extraction of

structural modes provides the mass matrix " , the stiffness matrix  , and mode shapes k8 , with which other variables Λ,

�
(0)
8

, Γ8 , a8 9 , and Π8 9 (8 = 1, ..., =, 9 = 1, ..., =) are calculated accordingly. The aerodynamics coefficients are calculated

based on two different scenarios. The first scenario assumes that the direct linearizations of �aero, "aero, and &aero

with respect to the rigid states, flexible states, and control surface deflections are available, while the second scenario

assumes a general state-space linear-time-invariant system realization is available. These two scenarios are detailed in
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the following subsections.

A. Model-Order Reduction with Static Residualization

Assume that the high-order aerodynamic solver provides a linearization of �aero, "aero, and &aero at a trimmed point

Gt with dynamic pressure @̄t. The coefficients in Eq. (46) are given by

�V0 =
1
@̄t


�aero,t

"aero,t

 , �Vj =
1
@̄t

m

mj


�aero

"aero

 ,
�[0 =

&aero,t

@̄t
, �[j =

1
@̄t

m&aero

mj
, (j ∈ {V, [, ¤[, X}) .

(54)

There are typically thousands of flexible states in the high-order models. To facilitate reduced order modeling, only a

small portion of selected modes is included in our adopted aerodynamics model. Let [ be decomposed according to the

selected modes and the discarded modes, i.e.,

[ =


[s

[d

 , (55)

and let other matrices be also decomposed accordingly:

�V[ =

[
�V[,s �V[,d

]
, �V ¤[ =

[
�V ¤[,s �V ¤[,d

]
,

�[0 =


�[0,s

�[0,d

 , �[[ =

�[[,ss �[[,sd

�[[,ds �[[,dd

 , �[ ¤[ =

�[ ¤[,ss �[ ¤[,sd

�[ ¤[,ds �[ ¤[,dd

 , �[X =

�[X,s

�[X,d

 ,
" =


"ss "sd

"ds "dd

 ,  =

 ss  sd

 ds  dd

 .
(56)

If the [d related terms are simply discarded by setting all the matrix with subscript d to zero matrices, this could leads to

significant model inaccuracy since the effects of discarded modes are not considered. As suggested in [27], steady-state

responses of [d can be included in the model to enhance the model accuracy, which is referred to as static residualization.

To enable the residualization, the steady-state final value Δ[d |C→∞ is calculated based on the following relationship,

Δ[d |C→∞ =
[

0 �

] (
 − @̄t�[[

)−1
@̄t

(
�[ ¤[ Δ ¤[ |C→∞ + �[X ΔX |C→∞ + �[V ΔV |C→∞

)
. (57)
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The residualization considers the effect of Δ[d |C→∞ through the modifications of the coefficients in the selected modes

as
�̄V[ = �V[,s,

�̄V ¤[ = �V ¤[,s + "V�[ ¤[ ,

�̄VV = �VV,s + "V�[V ,

�̄VX = �VX,s + "V�[X ,

�̄[[ = �[[,ss

�̄[ ¤[ = �[ ¤[,ss − "[�[ ¤[ ,

�̄[V = �[V,s − "[�[V ,

�̄[X = �[X,s − "[�[X ,

(58)

where the modification matrices are given by

"V = �V[,d

[
0 �

] (
 − @̄t�[[

)−1
,

"[ =
(
 sd − @̄t�[[,sd

) [
0 �

] (
 − @̄t�[[

)−1
.

(59)

Low-order models of the flexible aircraft are established with these reduced-order coefficients matrices.

B. Aerodynamic Coefficients from Linearization Matching

Certain high-fidelity modeling tools (e.g., UM/NAST) provides linearized models in the state-space form. Therefore,

the aerodynamics coefficients can also be acquired by matching the linearization at the trim point. This approach is

similar to the modal matching concept in [28]. Define the trimmed velocity, angular rate, center of mass location, and

elastic states to be Et, lt, A�,C , and [t,respectively. Then the linearization of the translation terms are given in Table 1.

Define

Γl = [Γ1lt, Γ2lt, ..., Γ=lt], (60)

where Γ8 = Γ8 + Γ>8 , (8 = 1, 2, ..., =) and

�l = [(Γ1 + Π 91[ 9 ,t)lt, (Γ2 + Π 92[ 9 ,t)lt, ...(Γ= + Π 9=[ 9 ,t)lt] . (61)

The rotational terms and their linearization are given in Table 2. Similarly, define matrices al and Πl with their

individual terms given by

al,8 9 = l
>
t a8 9 , (62)
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Πl,8 9 = l
>
t Π̄8 9lt. (63)

The flexible terms and their linearization are given in Table 3.

Table 1 Translation terms and linearization

Terms Expression Linearization terms Expression
�Frame < ( ¤E + l̃E) Δ�Frame <Δ ¤E + <l̃tΔE − <ẼtΔl

�Inertial <Λ ¥[ Δ�Inertial <ΛΔ ¥[
�Euler −<Ã� ([) ¤l Δ�Euler −<Ã�,tΔ ¤l
�Coriolis 2<l̃Λ ¤[ Δ�Coriolis 2<l̃tΛΔ ¤[
�Centrifugal <l̃2A� ([) Δ�Centrifugal <(2l̃tÃ�,t + Ã�,tl̃t)Δl + <l̃2

t ΛΔ[

Table 2 Rotational terms and linearization

Terms Expression Linearization terms Expression
"Frame <Ã� ([) ( ¤E + l̃E) Δ"Frame <Ã�,tΔ ¤E + <Ã�,tl̃tΔE − <(l̃tẼt − Ẽtl̃t)ΛΔ[ − <Ã�,tẼtΔl

"Inertial � ([) ¥[ Δ"Inertial � ([t) Δ ¥[
"Euler �� ([) ¤l Δ"Euler ��,tΔ ¤l + ΓlΔ[
"Coriolis 2� ([, ¤[) l Δ"Coriolis 2�lΔ ¤[
"Centrifugal l̃�� ([) l Δ"Centrifugal (l̃t��,t −���,tlt)Δl + l̃tΓlΔ[

Table 3 Flexible terms and linearization

Terms Expression Linearization terms Expression
&Frame,8 <Λ>

8
( ¤E + l̃E) Δ&Frame <Λ> (Δ ¤E + l̃tΔE − ẼtΔl)

&Inertial,8 +&Elastic,8 "8 9 ¥[ 9 +  8 9[ 9 Δ&Inertial "Δ ¥[ +  Δ[
&Euler,8 �>

8
([) ¤l Δ&Euler �> ([t)Δ ¤l

&Coriolis,8 2l>a8 9 ¤[ 9 Δ&Coriolis 2alΔ ¤[
&Centrifugal,8 −l> (Γ>

8
+ Π8 9[ 9 )l Δ&Centrifugal −ΠlΔ[

Assuming small changes in Euler angles and altitudes, the state-space linearization of the system at the trim condition

is given by

�rΔ ¤Gr = �rΔGr + �rΔD (64)

where ΔGr = {ΔE>,Δl>,Δ[s
>,Δ ¤[s

>}>. The matrices �r and �r are given by

�r =



<� −<Ã�,t 0 <Λ

<Ã�,t �� ([t) 0 � ([t)

0 0 � 0

<Λ> �> ([t) 0 "


(65)
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�r = �r0 + @̄



�̄VV �̄V[ �̄V ¤[

0=×(2=+6)

�̄[V �̄[[ �̄[ ¤[


(66)

where

�r0 =



−<l̃t <(Ẽt − 2l̃tÃ�,t − Ã�,tl̃t) −<l̃2
t Λ −2<l̃tΛ

−<Ã�,tl̃t <Ã�,tẼt − (l̃t��,t −���,tlt) <(l̃tẼt − Ẽtl̃t)Λ − Γl + l̃tΓl −2�l

0 0 0 �

−<Λ>l̃t <Λ>Ẽt Πl −  −2al


(67)

The matrix �r is given by

�r =



�V) @̄�̄VX

0=×=D

�[) @̄�̄[X


. (68)

Assuming a reduced order linear state space model is available from higher order modeling model order reduction with

�ref , �ref matrices, the aerodynamic coefficients are acquired through matching �r
−1�r to �ref , and matching �r

−1�r to

�ref . Additional terms �V0 and �[0 are defined by the zero state time rate of change condition at the trim condition. This

linearization formula from Eq. (64) to (68) also helps in evaluating the modeling error in the residualization procedure

due to discarding modes. All the residualization related terms �̄V[ , �̄V[ , �̄V ¤[ , �̄VV , �̄VX , �̄[[ , �̄[ ¤[ , �̄[ ¤[ , �̄[ ¤[ , �̄[ ¤[ ,

�̄[V , �̄[X can be generated with different numbers of discarded modes, and the corresponding frequency-domain

modeling error due to residualization can be generated by generating the frequency response function of Eq. (64).

IV. Simulation Case Studies

A. Case Studies with a General Transport Aircraft

The proposed semi-analytical FA model is numerically verified in this section for a general transport aircraft, which

weights 7139.74 kg and has a 19-m wingspan. The UM/NAST beam-based model is selected to be the high-order

benchmark model, which is shown in Figure 2. The detailed process of creating this model is described in [29]. The

nonlinear UM/NAST model has 333 states, including 13 rigid states and 320 elastic states, considering the flexibility of

the wings and the fuselage. The GTA weighs 7139.74 kg, and the aerodynamics linearization is acquired at a trimmed

cruise flight at the altitude of 6096 m and speed of 160 m/s. At this flight condition, the trimmed angle of attack is

1.345◦.
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Fig. 2 General transport aircraft UM/NAST modeling [29].

Three representative test cases are designed to show the longitudinal, lateral, and coupled responses of the

semi-analytical modeling of GTA. The excitations are defined as follows:

• a longitudinal excitation from elevator doublet with 1-degree amplitude,

• a lateral excitation from aileron doublet with 1-degree amplitude, and

• a coupled excitation of elevator and aileron with 1-degree amplitude.

The doublets inputs are illustrated in Figure 3. In the first two excitations, the doublets are introduced with Cstart = 1

second, Chalf = 4 seconds and Cend = 7 seconds. In the coupled excitation, an identical elevator doublet profile is

introduced while the aileron doublet is introduced 1 second later such that the contributions to the aircraft responses are

more distinguishable. The translation velocities (EG , EH , and EI), rotation velocities (?, @, and A), Euler angles (q, \,

and k), and representative elastic states are shown in Figures 4-6. To evaluate the aeroelastic behavior, 4 elastic modes

(= = 4) are preserved in the proposed low-order semi-analytical model. The first out-of-plane bending modes at 1.48 Hz

are most dominant in this configuration, thus, the amplitudes of these modes on the left and right wings ([! and [')

are selected to represent the responses of the flexible states. Under linearity assumption, unity values of [! and ['

correspond to the wing tip upward deflection of 0.11 m.

Fig. 3 Input doublet profile.

The rigid body and incremental out-of-plane bending modal responses under 1-degree elevator doublet input, using

high-order UM/NAST and proposed semi-analytical modeling with/without residualization (in Section III.A), are shown

in Figure 4. The primary responses to this longitudinal excitation are the forward velocity EG , vertical velocity EI , pitch
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Fig. 4 Rigid body and out-of-plane bending modal responses of GTA under 1-degree elevator doublet input.

rate @, and pitch angle \. The proposed semi-analytical model responses match the UM/NAST responses, especially

with the proposed residualization. For the rest of the lateral responses, small deviations are observed for the proposed

semi-analytical models. This is attributed to the significantly fewer numbers of modes (less than 10%) being used as

compared to the high-order models and small spill-over effects unavoidable with any model order reduction. Despite

these small deviations, the out-of-plane bending modes Δ[! and Δ[' are very accurately captured. In the simulated

descending maneuver, the bending modal amplitudes follow the doublet sequence, and the responses on the left and

right wings are symmetrical.

The rigid body and incremental out-of-plane bending modal responses under 1-degree aileron doublet input are

shown in Figure 5. The primary responses to this input are the lateral velocity EH , the roll rate ?, the yaw rate A , the roll

angle q, and the yaw angle k. These lateral terms are quite off for the semi-analytical model without residualization,

however, they are more accurately captured with residualization. Unlike the longitudinal responses in Figure 4, the

response for this lateral excitation introduces anti-symmetrical modal responses on the left and right wings. Note that

slight constant deviation arises from the small trim difference between the proposed semi-analytical model and the

high-order UM/NAST model, but the trend due to dynamics are captured. The residualization is observed to not only

affects the elastic responses but also has a significant impact on the rigid body responses. The out-of-plane bending
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Fig. 5 Rigid body and out-of-plane bending modal responses of GTA under 1-degree aileron doublet input.

terms Δ[! and Δ[' are very accurately captured. Unlike the longitudinal responses in Figure 4, the response for this

lateral excitation introduces anti-symmetrical modal responses on the left and right wings.

The responses to 1-degree coupled doublet input are shown in Figure 6, which further confirm that the semi-analytical

model with residualization captures the dynamics of the high-order UM/NAST mode with significantly fewer states.

This coupled excitation response has both the longitudinal and lateral excitations to the FA. The longitudinal excitation

mainly introduces lift and pitch moment to the aircraft, while the lateral excitation introduces mainly roll moment

to the aircraft. This effect of coupled excitations is well observed in the simulated responses in Figure 6. Also, the

out-of-plane bending terms Δ[! and Δ[' are very accurately captured. The responses’ major contribution arises from

the longitudinal excitation as it introduces lift, but the characteristic drop of Δ[' at around 5 second is also accurately

captured, indicating the effectiveness of the semi-analytical model.

To further analyze the modeling error of the proposed semi-analytical method, the integrated square of the response

error normalized by the total responses (away from the trim) is selected as a model accuracy metric. These normalized
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Fig. 6 Rigid body and out-of-plane bending modal responses of GTA under 1-degree coupled doublet input.

errors for the rigid-body states, flexible states, and all states of interests are defined as 4r, 4f , and 4all; they are given by

4r =

∫ )sim

0

��Hr,NAST (C) − Hr,ROM (C)
��23C∫ )sim

0

��Hr,NAST (C)
��23C ,

4f =

∫ )sim

0

��Hf,NAST (C) − Hf,ROM (C)
��23C∫ )sim

0

��Hf,NAST (C)
��23C ,

4all =

∫ )sim

0 |HNAST (C) − HROM (C) |23C∫ )sim

0 |HNAST (C) |23C
,

(69)

where )sim = 10 is the simulation time, while Hr,NAST and Hr,ROM are the rigid body states of interest (i.e. Δ#, Δq, Δ\,

and Δk) for UM/NAST and the proposed semi-analytical reduced order model, respectively. Same notion applies

to the flexible states (Hf,NAST and Hf,ROM) and total states (HNAST and HROM). The errors are evaluated based on the

deviation of the responses from the the trim condition such that only the dynamic response differences are compared.

Figure 7 illustrates the modeling error for the three different test cases with increasing excitation amplitudes. The

presented percentage exaggerate the model inaccuracy in a way that the high-frequency oscillations in the UM/NAST

model are intentionally discarded in the semi-analytical model, while these high-frequency error contributes to the total

23



error integration in Eq. (69). The lateral excitation results in a relatively low modeling error (below 6%) while the

longitudinal and coupled excitation exhibit an increasing modeling error with increasing amplitudes. This attributes to

the fact the increased geometrical nonlinearity, which is not captured in our the flexible aircraft modeling framework. In

the maximum amplitudes shown in Figure 7, the tip deflection reaches about 3.7 m, which is more than one-third of the

total wingspan. Even with this large deformation violating the linear assumption, the proposed semi-analytical model

still captures more than 80% of the dynamic response.
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Fig. 7 Normalized error of the rigid-body states, flexible states, and all states for the longitudinal excitation,
lateral excitation, and the coupled excitation for different amplitudes.

To understand the effect of the number of the elastic states, random coupled doublet excitations from the elevators,

ailerons, rudder, and thrust input are generated and the model accuracy is assessed. The thrust forces are kept to have

maximum amplitudes of 1000 N, and the control surface deflections have maximum of 1 degree. The statistics of the

modeling error of the rigid-body states, the flexible states, and all the states are shown in Figure 8. Note that only the

statistics for = = 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 20 are presented. This selection is rationalized by the fact that the 7th and

the 11th modes are elastic modes of the fuselage, and that the symmetric modes of the left and right wings are always

preserved in the proposed semi-analytical approach. In this GTA setup, the first two bending modes are dominant such

that considering only two elastic states yields relatively accurate results with residualization. However, same level of

modeling accuracy requires almost 18 elastic states without residualization. Also, the modeling error uncertainty is

reduced with the proposed residualization.
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As discussed in Section III.B, the frequency-domain system representations can be used to analyze the modeling

error due to the residualization procedure. This has been verified by comparing the frequency response function (FRF)

of FA from the joint elevator incremental input in degrees to the flexible responses. The FRF with 20, 11, and 4 kept

modes with corresponding cutoff frequencies at 63.19 Hz, 20.85 Hz, and 8.13 Hz, respectively, are shown in Figure 9.

The effect of the residualization is clearly shown as the low-frequency portions of the responses are kept the same due

to the consideration of DC component preservation in the residualization procedure. The frequency ranges that the

proposed FA model has relatively high accuracy can be well estimated from the modal decomposition information. It is

also shown that the cutoff frequency is a desirable indicator of the frequencies, beyond which significant deviations

exists.

B. Case Studies with XRF1 Flexible Aircraft

In this section, the proposed semi-analytical approach is applied to a representative commercial transport aircraft. The

XRF1 is an Airbus provided industrial standard multi-disciplinary research test case representing a typical configuration

for a long range wide body aircraft. The UM/NAST model of the XRF1 [30] shown in Figure 10 is used as a reference

full-order solution. The nonlinear UM/NAST model of the XRF1 has 1021 states, including 13 rigid states and 1008

elastic states. The XRF1 weighs 7139.74 kg, and it is trimmed at an altitude of 8484.108 m and speed of 253.9825 m/s

(i.e., Mach 0.83). The trimmed angle of attack is 1.315◦.

The responses to the coupled excitation (third test case as in Section IV.A) of 1-degree amplitude using 10 elastic

states are shown in Figure 11. Clearly, the proposed semi-analytical model captures the dynamics with residualization.

In this descending turn maneuver, the roll rate and angle are very accurately captured. The pitch and yaw responses

have slight error but the trend is mostly captured. The modeling errors for different numbers of elastic modes are shown
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Fig. 10 XRF1 NASTRAN GFEM model and UM/NAST model [30]
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Fig. 11 Rigid body and out-of-plane bending modal responses of XRF1 under 1-degree coupled doublet input.

in Figure 12. The modeling error is higher in the case of XRF1 than GTA since the XRF1 responses contains more

high-frequency components, which exaggerate the error metrics. Also, more states are discarded in the XRF1 model

such that the modeling error is higher than in the case of the GTA model. In particular, having more than 14 states can

further enhance the model accuracy both with and without residualization. Also, the residualization reduces the total

modeling error by about 30%.

V. Conclusion
This paper introduced a semi-analytical low-order model of the flight dynamics of flexible aircraft, where the

geometric displacements, although in the linear range, cannot be accurately captured only by flex-to-rigid ratio correction

26



5 10 15 20
Input Amplitude (°)

10

20

30

40

e  r
 (

%
)

5 10 15 20
Input Amplitude (°)

15

20

25

30

35

40

e  f
 (

%
)

5 10 15 20
Input Amplitude (°)

20

25

30

35

40

e  a
ll (

%
)

w. residualization w.o. residualization

Fig. 12 Normalized error of the rigid-body states, flexible states, and all states for different number of preserved
elastic modes of XRF1, with and without residualization.

of aerodynamic effects in the 6-rigid-DOF equations of motion. It adopted the body-fixed axes formulation and the

flexible aircraft dynamics were derived including rigid and flexible degrees of freedom and preserving the physical

interpretation of the various parameters in the problem. The aerodynamic linearization from high-order models was

employed to enhance the modeling accuracy. To enhance the model accuracy with fewer states, static residualization

was also derived and adopted. In addition, the analytical linearization of the model was derived, as well as methods to

extract the aerodynamic linearization from the state-space linear-time-invariant system realization. The new approach

was verified for modeling a general transport aircraft and an Airbus XRF1 aircraft. Both longitudinal, lateral, and

coupled dynamics were well captured with significantly less number of states in comparison to reference high-order

nonlinear UM/NAST models.
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