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A B S T R A C T   

Multi-axis additive manufacturing exploits additional degrees of freedom to enhance printability and flexibility 
compared to conventional 3D printing. Among various multi-axis additive manufacturing approaches, multi- 
directional printing decomposes the printing volume into sub-volumes and assigns individual printing di-
rections to each sub-volume. Multi-directional printing enables support-free fabrication of complex and freeform 
geometry with minimum setup changes, which though requires elaborate process planning and printing tra-
jectory generation. Current process planning approaches for multi-directional printing focus on support-free 
fabrication but do not consider the mechanical strength in its volume decomposition planning. Therefore, this 
paper proposes an integrated strength-support volume decomposition optimization method that simultaneously 
achieves support-free printing and strength enhancement. The proposed method establishes an optimization 
problem to enhance the mechanical strength and the support-free index, with the partition planes as the opti-
mization variables. The mechanical strength model is established by finite element analysis, capturing the inter- 
layer and intra-layer strength differences in printing. The final optimization problem is solved via a heuristic 
beam search algorithm, and confirmative simulation results are verified through multi-axis printing and bending 
tests on representative 3D models (L-shaped beam, Stanford Bunny, etc.).   

1. Introduction 

Additive manufacturing (AM) is a promising technology that builds 
volumetric objects through layer-by-layer printing. It has been widely 
used in the automotive, aerospace, and medical industries due to its 
manufacturing flexibility and quick prototyping for product custom-
ization [1]. Among various layer-wise AM technologies, fused deposi-
tion modeling (FDM) and directed energy deposition (DED) are the 
representative ones that involve synchronized movements of the print-
ing platform and the nozzle. Therefore, their path and process planning, 
including building orientation setup, slicing, support generation, and 
path generation for material filling, is crucial to printing accuracy, cost 
and part strength [2,3]. 

In layer-wise AM, the fabrication of complex parts with strength 
retention is one of the most challenging issues due to its layer-by-layer 
nature and anisotropic printing performance [4]. To improve the me-
chanical behavior of fabricated parts, it is necessary to understand the 

relationship between processing parameters and mechanical properties. 
The mechanical performance of the printed parts, such as tensile 
strength, compressive strength, Young’s modulus, and failure modes, 
are different along the intra-layer and interlayer printing directions 
[5–9]. The difference can be easily verified with finite element analysis 
(FEA) simulation and experiments. The tensile strength of printed parts 
along the axial direction is proved to be much stronger than along the 
transverse and out-of-plane directions [8], while the compressive 
strength is not significantly affected by the build direction [5]. Such 
mechanical anisotropy arises from the weaker adhesion between adja-
cent layers, which is caused by the reduced interaction and entangle-
ment of the polymer chains [10]. Another significant characteristic of 
layer-wise AM is that materials have limited admissible overhang an-
gles and they need support for overhang features. However, support 
structures increase the printing time, materials cost, and the risk of 
surface damage during post-processing [11]. 

Multi-axis AM technique is one promising solution to alleviate the 
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limitations of layer-wise AM. In contrast to the traditional fixed- 
directional AM, multi-axis AM offers more degrees of freedom (DOFs), 
enabling translation and variable nozzle orientation of the printing 
system. On the other hand, the increased flexibility due to additional 
DOFs requires more general and flexible process and path-planning al-
gorithms. Volume decomposition is typically required to generate the 
stacking of layers for material deposition. Current volume decomposi-
tion methods can be generally classified into layer-based and part-based 
types. The layer-based methods generate curved layers directly from 
geometric features of volumetric parts, either by scalar fields [12,13] or 
convex primitive layers [14–16], where the build orientation changes 
continuously. However, curved layers induce the local gouging issue for 
concave layers and the potential intersection between adjacent layers 
catering for continuous multi-axis printing. Also, consecutive changes of 
build-up orientation increase the time cost. 

The part-based methods, by contrast, divide the specimen into sub- 
parts and slice them into planar layers for implementing multi- 
directional printing [4]. As Fig. 1 shows, this multi-directional print-
ing approach intermittently alters the build-up orientation, thus avoid-
ing the local gouging issue in the layer-based methods. The optimized 
multi-directional process planning aims to enhance mechanical per-
formance/accuracy and reduce support usage and cost [14,15]. A 
decomposition optimization problem regarding printing quality and 
structural soundness of fabricated parts was first formulated by Luo et al. 
[16], wherein the sub-parts are assembled instead of continuously 
printed. Subsequent research extended the work into multi-directional 
AM and developed algorithms of volume decomposition optimization 
for support-effective fabrication through geometric recognition 
[17–19], exhaustive search [20] or heuristic algorithms [21–24]. The 
exhaustive search method is computationally robust but may result in 
suboptimal solutions, while heuristic techniques enable global optimi-
zation of decomposition [23], but their effectiveness is limited in some 
complex geometries [21,22]. Nonetheless, part-based volume decom-
position still suffers from weak mechanical strength as it does not 
extensively optimize the build orientations considering the mechanical 
strength (unlike the methods in the layer-based volume decomposition 
work [25–27]). Ulu et al. [18] tried to find the best overall build-up 
orientation to maximize structural robustness and verified their orien-
tation robustness through experiments. Expanding from single to mul-
tiple orientations, Hildebrand et al. [28] developed an orthogonal 
decomposition approach considering three basis of build-up orientations 
in terms of printing speed and tensile strength, which is superior to 
unidirectional printing but insufficiently optimized. Alternatively, Guan 
et al. [29] achieved better strength retention between adjacent sub-parts 
by increasing intermolecular penetrating diffusion via gas laser heating. 

To sum up, most existing part-based volume decomposition methods 
have not considered the mechanical strength and support effectiveness 
simultaneously. To fill this gap, this paper develops a strength-enhanced 
support-effective volume decomposition (SESEVD) optimization 

framework (Section 2) to improve the mechanical strength of fabricated 
parts while at the same time reducing the support usage fulfilling 
continuous fabrication requirements. This framework utilizes FEA 
simulation results to evaluate the mechanical behavior of fabricated 
parts, and the resultant maximal principal stress direction is encouraged 
to be locally perpendicular to the build orientation via decomposition, 
while at the same time, for strength enhancement, the decomposition is 
avoided to be settled at high-stress regions. The support usage is also 
reduced through build-orientation-dependent overhang face area mini-
mization. A heuristic beam-searching algorithm is developed to deter-
mine the optimized decomposition solution within the discrete search 
space. In Section 3, the computational simulations are conducted on 
several representative 3D models (L-shape beam, Stanford Bunny, me-
chanical mounter), and the following bending tests of fabricated models 
are used to verify the optimization tailoring the mechanical properties 
and supportless printing. Finally, Section 4 concludes the investigations 
and the effectiveness of the proposed framework resulting from the 
computational optimization and experiments. 

2. Optimization of SESEVD for multi-directional printing 

2.1. Preliminaries 

Our volume decomposition and its corresponding process planning 
comprise the following two main phases: 1) Given an input 3D mesh 
model M , the decomposition strategy divides the model into a few sub- 
parts V i by a sequence of planes P i, indicating multiple build orien-
tations; and 2) planar layers and their corresponding continuous print-
ing paths are generated for sub-part printing. The input M is assumed to 
be a tetrahedron mesh, while its boundary is a set of triangular faces, 
regarded as a surface mesh S . Hereafter, a single triangular face c and a 
single tetrahedral cell t are deemed the elementary units for S and M , 
respectively. 

The proposed optimization scheme starts with generating a bunch of 
discrete candidate planes serving as the searching space. We generate 
candidate planes by sampling a number of orientations in Euclidean 
space. As shown in Fig. 2(a), the orientation oiis defined by a longitude 
angle αi and a latitude angle γi, where αi ∈ [0,360◦], γi ∈ [0, 90◦]. By 
controlling the step-increase size of parameters ΔαandΔγ, the candidate 
build orientation set is uniformly sampled on a hemisphere, as Fig. 2(b) 
shows, and written as Ο = {o1, o2,…on}. Given the sampled orientation 
set Ο and surface mesh S , for each oi ∈ Ο, its equi-distant parallel 
planes are induced, and let Π denote the infinite set of all such planes. In 
the plane set Π, an arbitrary candidate plane πi is defined by four pa-
rameters, written as (ai, bi, ci, di), where the vector of (ai,bi,ci) indicates 
the normal direction oi of plane and diis the distance from the plane to 
the origin. We mathematically define the positive half-space of πi as 
h+

i ≡ {(x, y, z)| aix+biy+ciz ≥ di}, and the negative half-space as h−
i . A 

plane intersecting with the model is used to geometrically identify the 
decomposition operation. Considering the ith partitioning towards the 
model by πi, the model represented by M i(S i) is separated into two, 
where the part on the side of h+

i is marked by M +
i (S

+
i ) and the one 

Fig. 1. Schematic diagram of part-based volume decomposition with planar 
slicing for multi-directional printing. 

Fig. 2. (a) Definition of oiby a longitude angle αi and a latitude angle γi on 
hemisphere and (b) their uniformly sampled orientations. 
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within h−
i is marked by M −

i (S
−
i ), as Fig. 3 shows. The negative part M −

i 
also decides the (i + 1)th model M i+1, with M 0 = M , which is to be 
partitioned subsequently. Note that, as the tetrahedron mesh M is 
assumed to be very fine, to save the computing time, if a tetrahedron cell 
t intersects πi, the entire t will be put into h+

i if the centroid of t is above 
πi, and vice versa. 

2.2. Definition of fabrication criteria and objective functions 

The SESEVD process planning for multi-directional printing needs to 
satisfy the collision-free criterion while trying to increase the mechan-
ical strength and reduce the overhang areas. The collision-free criterion 
is formulated as an optimization constraint, while the support effec-
tiveness and enhanced mechanical strength are formulated as 
objectives. 

Criterion I: collision-free criterion. 
Let us set that the initial base platform B is in the XY plane and the 

default build orientation ob = (0, 0,1). As build orientation changes in 
multi-directional printing, collision risk increases between the deposi-
tion device and the base platform B . To avoid collision, collision-free 
criterion between the plane πi (as a potential building platform for the 
following sub-part) and the platform B is given by 

πi

⋂
B = ∅. (1) 

Criterion II: support-free criterion. 
Fig. 4 illustrates the overhang condition of triangular faces under a 

build orientation ob specified by the base platform B , which is equally 
applied to any plane πi whose normal direction determines the building 
direction oi. The overhang angle threshold is denoted by θ∗, which is 
generally set to 45◦. Let nc p represents the normal direction of any 
triangular face cp on boundary mesh S . For each cp on S , its overhang 
condition under a specific building orientation oi is estimated by the 
following criterion, 

ncp • oi + sin(θ∗) < 0. (2) 

The faces satisfying this criterion are called overhang faces, 

otherwise called overhang-free faces. Upon checking the triangular face 
c p belonging to S +

i (the surface mesh S above the building plane πi), 
the support effectiveness of πi is denoted by S(πi) and defined by adding 
up all the overhang faces’ areas as follows: 

S(πi) =
∑

cp∈S +

h
(
ncp , oi

)
s
(
c p
)
< hmax, (3)  

h
(
ncp , oi

)
=

{
1, overhang

0, overhang − free

}

, (4) 

where h
(
ncp , oi

)
is a Boolean function that clarifies the overhang 

condition of c p, depending on the build orientation oi and face normal 
ncp ; and s

(
c p
)
represents the face area of c p. An allowable overhang area 

threshold hmax is set to guarantee the support effectiveness of πi. 
Objective 1: minimizing the alignment between the build orienta-

tion and the stress direction. 
The goal of enhanced mechanical performance is achieved by 

minimizing the maximal principal stress accumulation and the overlap 
of the partitioning planes with the high-stress regions. Specifically, the 
maximal principal stress directions are encouraged to align within the 
deposited layers due to the anisotropic mechanical properties of layer- 
wise fabricated parts [8,27]. The principal stresses are derived from 
the second-order Cauchy stress tensor σ associated with a tetrahedral 
cell t , given by 

σ =

⎛

⎜
⎜
⎝

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎞

⎟
⎟
⎠. (5) 

This symmetric tensor, by eigenvalue decomposition, defines three 
principal stress vectors σ1, σ2, and σ3, satisfying |σ1| > |σ2| > |σ3|. It also 
defines the scalar von Mises stress σv (commonly used to determine the 
material yielding) given by 

σv =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(|σ1| − |σ2|)
2
+ (|σ2| − |σ3|)

2
+ (|σ3| − |σ1|)

2

2

√

. (6) 

Tetrahedral cells with high stress σv exceeding a specified threshold 
σth define the risky region R (which may be disjointed), where the 
partitioning plane πi is discouraged from passing through. To quantita-
tively evaluate the mechanical performance of the printed part resulting 
from the decomposition, the objective function J1(πi) is defined as the 
superposition of alignment between the build orientation and the 
maximal principal stress direction over the printing volume, considering 
the anisotropic mechanical properties of layer-wise fabricated parts. 
Besides, instead of imposing a strict constraint that prohibits the 
decomposing plane from intersecting with risky cells, a penalty function 
q is involved in J1(πi) to softly constrain the decomposition near risky 
regions. Consequently, by considering the maximal principal stress σ1 

and the risky region R , a part strength evaluation function optimizing a 
candidate plane πi is defined as 

J1(πi) =

(

∑

t p∈M +
i

⃒
⃒oi⋅σ1,p

⃒
⃒

NM +

+

∑

t p∈M −
i

⃒
⃒ob⋅σ1,p

⃒
⃒

NM −

)

q, (7)  

q =

(

1 +
cN

NM

)nq

,NM = NM + + NM − . (8) 

In the above formula, NM + , NM − , and NM denote the tetrahedron cell 
numbers of M +

i , M −

i and M , respectively. The q is acted as a multiplier 
where cN is the number of risky tetrahedrons in R that intersect with πi, 
and nq is the penalization factor trading off the risky region avoidance 
and the printing direction alignment. Note that the dot product 

⃒
⃒oi⋅σ1,p

⃒
⃒

defines the projection of the maximal principal stress σ1,p of a specific 
tetrahedron cell t ponto the corresponding build orientation oi(ob), and 

Fig. 3. Part decomposition of M into its positive part M +
i and negative part 

M
−
i by plane πi. 

Fig. 4. Overhang condition of the boundary faces c p and cq under the direction 
oi(ob) (θ∗ denotes the threshold angle). 
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their average values in M
+

i and M
−

i represent the build orientation’s 
alignment with the maximal principal directions. The over-stress risk 
q(q ≥ 1) is a penalty function to avoid πi across R : q = 1 indicates no 
risky tetrahedron cells in R intersect with πi, while a larger q indicates 
more overlap between πi and R , which fosters a higher tendency to 
avoid decomposing parts around risky cells potentially. 

The measurement of J1 depends on the stress analysis results and is 
affected by the setup of external loads and boundary conditions. 
Accordingly, multiple-loading conditions are considered in J1 assess-
ment and a positive coefficient φ1,k is introduced to weight the kth 
loading condition, with 

∑
φ1,k = 1. The formula Eq. (7) is thus further 

modified as a linear combination, i.e., 

J1(πi) = φ1,1J1,1(πi) + φ1,2J1,2(πi) + …φ1,kJ1,k(πi), (9)  

where J1,k(πi) corresponds to the kth loading scenario with the respec-
tive weight φ1,k. 

Objective 2: minimization of the overhang face area. 
The design of any partitioning plane is dedicated to reducing or 

eliminating the support structure usage. To facilitate it, a measurable 
indicator of support structure usage J2(πi) is defined by the cumulative 
area of residual overhang faces among S , expressed by: 

J2(πi) =
∑

cp∈S +

h(ncp , oi)s
(
c p
)
+
∑

cp∈S −

h(ncp , ob)s
(
c p
)
=
∑

cp∈S −

h(ncp , ob)s
(
c p
)

(10) 

Similar to Eq. (4), h( • ) and s( • )represent the overhang condition 
and face area of any triangular face c p, respectively. Due to Criterion II 
restricting plane πi to be overhang-free, the cumulative overhang face 
area above πi (the first term in Eq. (10)) is assured to be zero. Thus, the 
determination of J2 only depends on the calculation of c pbelonging to 
S

− under the default orientation ob. Minimizing J2 reduces the over-
hang area in the model, contributing to supportless fabrication. 

Combining the two prescribed objective functions (Eqs. (7) and (10)) 
together to simultaneously addresses mechanical strength enhancement 
and overhang area reduction, a linear combination of Eqs. (7) and (10) is 
in order, given by 

J(πi) = μ1J1(πi) + (1 − μ1)J2(πi), (11)  

J1(πi) = tanh
(

J1(πi)

b1

)

, (12)  

J2(πi) = tanh
(

J2(πi)

b2

)

. (13) 

The coefficient μ1 and 1 − μ1 in Eq. (11) describe the weights of each 
objective accounting in the final score J(πi) as a trade-off between the 
stress and support-free metrics, while J1(πi) and J2(πi) represent rescaled 
functions of J1(πi) and J2(πi). The rescaled functions introduce hyper-
bolic tangent function tanh( • ) to unify the different magnitude orders of 
J1(πi) and J2(πi), which are both positives in their domains. The 
tanh( • )function values J1(πi) and J2(πi) are limited to [0,1] in the 
domain of [0,+∞) and approaches asymptote at high values of J1 and J2, 
where b1 and b2 are two independent constants. As facilitated by Eqs. 
(11)-(13), the two representative optimization objectives, i.e., the 
strength enhancement and supports reduction, are now combined into a 
single minimization problem. 

2.3. Schemes of SESEVD optimization 

The established SESEVD optimization model is solved via a heuristic 
beam search algorithm, considering that the objective functions are 
highly nonlinear and extremely arduous to evaluate. The beam search is 
based on an iterative enumeration of the feasible solutions implemented 
by a searching tree. Unlike greedy search techniques, beam search en-

ables the retention of multiple optimum results at each iteration instead 
of a single optimum. A parameter ω ∈ N+ is used to define the number of 
best-performed beams in the search. A larger ω expands the search 
space, leading to greater possibilities of finding a desirable solution 
though at the cost of increased search time. Bounded by ω, the search 
algorithm (Algorithm 1) iteratively evaluates candidate planes in a 
breadth-search first manner in the search space until the stopping con-
ditions are encountered, and the model is progressively partitioned into 
sub-parts top-down. 

The whole optimization scheme consists of a pre-computation pro-
cedure and the volume decomposition optimization procedure via 
beam-search-based optimization. The pre-computation procedure first 
determines the surface mesh S and base B , the sampling candidates of 
orientation set Ο and plane set Π, as well as the critical stress region R . 
Besides, the overhang condition is checked for sampled orientation set 
Ο. For ∀oi ∈ Ο, a number of overhang faces on surface mesh S are 
marked as overhang face set C . When judging the support effectiveness 
of plane πi whose normal direction is oi, it only needs to evaluate the 
support-free condition for c ∈ C instead of c ∈ S . 

In the main procedure, i.e., the volume decomposition optimization, 
the search process starts from the root node T 0,0 = {M ,P 0,0}, which 
stores the unprocessed model M and an empty plane list P 0,0for 
decomposition. The search space is defined by Π, where candidate 
planes with the same oi are stored in Πi ∈ Π, which are ordered based on 
the coordinates resulting from the model-plane intersection. At each 
generic iteration t, the search traverses the orientation set Πi ∈ Π 
sequentially. During orderly searching through Πi, the plane πi,j∈ Πi is 
first examined by the fabrication criteria. The plane πi,j violating the 
collision-free criterion (Criterion I) is abandoned and the search jumps 
to πi,j+1∈ Πi, while if the support-free criterion (Criterion II) is not met, 
the search skips to Πi+1. The qualified planes that satisfy both criteria, 
defining the set D of candidate descendants, are then evaluated 
following Eqs. (7)-(13), and the evaluation scores J

(
πi,j
)

are obtained 
accordingly. Afterwards, the set D is sorted according to the evaluation 
scores to select its descendant node for the construction of the next level 
T t+1,k, where t denotes the current iteration number and k denotes the 
reserved number bounded by ω. By minimizing the proposed objectives, 
the ω current best-performed planes π∗

t+1,k(k = 1, 2,…,ω) are selected 
according to the order and stored in the plane list P t+1,k. The mesh M is 
decomposed by plane π∗

t+1,k to get M −
k for the subsequent iterations. The 

resultant component M
−
k and the corresponding plane list P t+1,k are 

thus stored in the tree node as T t+1,k = {M −
k , P t+1,k}. The corre-

sponding update for surface mesh S , candidate planes Π, and the 
overhang face set C are implemented as well. Such iterations are 
repeated until the stopping criteria are reached. The stopping criteria for 
the beam search include two possibilities. The first one is that the 
anticipated ω beam nodes are filled with qualified decomposition solu-
tions, where a node T t,k = {M −

k ,P t,k} is regarded as a beam node when 
M

−
k satisfies the support-free conditions within the allowable threshold. 

Another stopping situation is that a prescribed maximum number of 
partitioning operations, denoted by nc, is reached. As a result of the 
search operation, a specific number of decomposition solutions G b,k(k ≤

ω) are obtained. 
A single group of decomposition solution P k ∈ G b,k consists of a 

sequence of feasible partition planes π1
∗, π2

∗…πN
∗. The N planes 

decompose the model into N+ 1 sub-parts, and the resultant sub-parts 
satisfy the following relation: 

M = M
+

1 ∪ M
+

2 …∪M
+

N ∪ M
−

N . (14) 

The overall score of P k is calculated by summing up the evaluation 
values of all the involved planes, given by 

S(P k) =
∑

πk∈P k

J(πk
∗).k ∈ [1,N]. (15) 

By minimizing the S(P k) among all feasible solutions in G b,k, the 
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solution P
∗ with a minimal score S(P ∗

) is selected as the optimal 
decomposition strategy. The pseudo-code for the prescribed SESEVD 
optimization is outlined in Algorithm 1. 

Algorithm 1. The SESEVD optimization. 

The printing sequence design between different sub-parts is crucial 
in process planning, as it may cause collisions between the deposition 
device and the fabricated parts. In this study, the decomposition process 
naturally defines the printing sequence as the solution P ∗ provides a 
sequence of planes in a top-down order for partitioning M , which is 
opposite to the printing sequence between the sub-parts (bottom-up). In 

addition, the mesh-decomposition process after each iteration ensures 
no fabricated parts above the partition plane, thereby preventing po-
tential collisions. The printing sequence is not explicitly designed for 
multiple sub-parts in M

+ from any single partitioning so that the 
deposition sequences are switched between sub-parts in each layer. 

3. Simulation and experiment results 

The proposed SESEVD optimization method was verified through 
computational simulation on three representative models: an L-shaped 
beam, a mechanical mounter, and a Stanford bunny. The tested models 
were created in Solidworks and meshed into tetrahedral elements. 
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Before applying the optimization procedure, the stress analysis was first 
carried out on the tetrahedral models in C3D10 element type by the 
commonly used FEA commercial software ABAQUS. Multiple loading 
scenarios were studied via stress analysis using PLA material under the 

isotropic material assumption. The adopted PLA material parameters are 
Young’s modulus of 2.3 GPa, Poisson’s ratio of 0.37, and density of 
1.25g/cm2. 

The established optimization procedure in Algorithm 1 was 

Fig. 5. (a), (d) FEA simulation setups, (b), (e) resultant von Mises stress contours, and (c), (f) maximal principal stress flows under two loading scenarios on the L- 
shaped beam. 

Fig. 6. (a), (d) FEA simulation setups, (b), (e) resultant von Mises stress contours, and (c), (f) maximal principal stress flows under two loading scenarios on the 
mechanical mounter. 
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implemented in C+ +, while ω = 4 bounds the heuristic beam search as 
a balance of optimization performance and computational efficiency. In 
the following case studies, the candidate orientations and planes were 
sampled by parameters Δα = 10◦, Δγ = 5◦; the maximum allowable 
partition number nc = 6 was used to terminate the search process. The 
SESEVD optimization procedure was first simulated on the L-shaped 
beam subject to both single-loading and multiple-loading conditions. 
The objective function Eq. (11) defines the coefficient μ1 addressing the 
importance of stress-metric in evaluation, indicating that the selection of 
μ1 influences the optimization solutions. Accordingly, several SESEVD 
optimizations were performed with μ1 changing from 0.1 to 0.9 with a 
step of 0.1. Besides, a mechanical mounter (with non-zero genus ge-
ometry) and a Stanford bunny (with complex geometrical features) were 
simulated under single-loading conditions to demonstrate our algo-
rithm’s robustness. Finally, bending tests were further conducted on 
several fabricated L-shaped beam specimens to investigate the effects of 
the strength weight μ1 on optimized SESEVD solutions and to identify 
part strength improvements through optimization. 

3.1. Simulation results 

The FEA simulations on three test models (L-shaped beam, me-
chanical mounter and Stanford bunny) are presented in Fig. 5, Fig. 6 and 
Fig. 7, respectively. For each model, two individually applied loads are 
shown in (a) and (d) of their corresponding diagram, where the arrows 
indicate the loading directions and cones denote the fixed boundary 
conditions. The Cauchy tensors were obtained through simulation, and 
the resultant von Mises stress contours under the corresponding loading 
conditions were visualized in (b) and (e) on the tested models. Derived 
by the Cauchy tensor, the maximal principal stress σ1 for each tetrahe-
dral cell t was calculated following Section 2.2. Besides, the diagrams 
gave a macroscopical view of the maximal principal stress flows among 
M in (c) and (f), where the blue dots with pink arrows indicate the unit 
directions of σ1 on the centroid of t . As a result, the maximal principal 
stress and von Mises stress resulting from the FEA simulation were uti-
lized in Eq. (7) for J1 evaluation, and nq = 3 was adopted in Eq. (8) to 
define the penalization factor. 

Fig. 7. (a), (d) FEA simulation setups, (b), (e) resultant von Mises stress contours, and (c), (f) maximal principal stress flows under two loading scenarios on the 
Stanford bunny. 

Fig. 8. Evaluation score (J1, J2, J) of decomposition solution with the variation of strength weight μ1 under (a) single-loading conditions and (b) multiple- 
loading conditions. 
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Through the established Algorithm 1, computational simulations 
were first adopted on the L-shaped beam. The evaluation scores J1, J2 
and J of the optimized solutions with different u1’s were shown in Fig. 8, 
where (a) and (b) showed the trend under the single-loading condition 
and multiple-loading condition, respectively, corresponding to the load 
setups in Fig. 5. Observed from the diagram, increasing of μ1 from 0.1 to 
0.9 decreases J1 and increases J2 on the whole, while the overall score J 
= μ1J1 +(1 − μ1)J2 rises first and then descends. The reason is that in the 
small μ1 situation, the dominant factor in optimization is the support- 
free metric so that the influence of J1 on J is much weaker than J2. 
Therefore, it is concluded that μ1 is an effective tuning variable to bal-
ance between the strength and the support effectiveness metric. 

The optimum SESEVD solutions obtained from Fig. 8 under specific 
μ1 were visualized in Fig. 9 and all of them led to a single partition plane. 
Fig. 9(a) shows the solutions under the single-loading condition, with 
arrows indicating the build orientation and serial numbers marking the 
sub-parts sequence top-down. As the results indicated, a single partition 
plane defined by the outline is obtained through SESEVD among 
different strength weight μ1. Among solutions of μ1 = 0,0.2,0.5,0.8, the 
limiting case of μ1 = 0 was obtained by merely optimizing the support- 
free metric (J2) to compare with the strength-enhanced cases (μ1 > 0). It 
is noted that, for the case of μ1 = 0, when identical scores obtained from 
J2 = 0 result in multiple feasible solutions, the one with the highest J1 
value is selected. Similarly, the optimal solutions subject to the multiple- 
loading condition were given in Fig. 9(b) for μ1 = 0, 0.5, 0.9, while a 

larger difference between (a) and (b) were found in the cases of μ1 > 0.5 
due to the multiple-loading scenarios involved. In this case, two loading 
scenarios were implemented with assigned φ1,1 = φ1,2 = 0.5 in Eq. (9), 
indicating the two loading conditions are of equal importance. More-
over, when considering the single-loading condition withμ1 = 0.8 and 
the multiple-loading condition with μ1 = 0.9, the optimization results in 
solutions with large overhang areas. It is indicated that selecting high 
values of μ1 prioritizes the optimization of the strength metric while 
simultaneously weakening the support-free metric. To provide guidance 
on the selection of μ1, an area threshold A∗ is introduced as the 
maximum tolerable overhang face area for comparison with the J2 score. 
In cases where the decomposition solution results in excessive overhang 
area left (J2 > A∗), the value of μ1 can be decreased. It is important to 
note that the choice of μ1 is dependent on the specific requirements of 
the parts being fabricated. In cases where the part has a higher demand 
for strength performance, higher μ1 is more appropriate. Based on the 
case analysis of μ1, a weight of 0.5 is adopted in this paper for adopting a 
general optimization procedure on test models for the lateral physical 
experiment, implying the equal importance of mechanical attributes and 
support-free metric in achieving desired volume decomposition. 

Consequently, the SESEVD simulations with μ1 = 0.5 were per-
formed on a total of three models, and the computational statics are 
concluded in Table 1. Fig. 10 showcases the optimized solutions for the 
L-shaped beam, Stanford bunny, and mechanical mounter models, 
considering both single-loading and multiple-loading conditions. Spe-
cifically, (a)-(c) depict the models partitioned into 2, 5, and 2 sub-parts 
under a single-loading condition, while (d)-(f) display the solutions 
partitioned into 2, 6, and 2 sub-parts, respectively, under a multiple- 
loading condition. The optimization results reveal that the L-shaped 
beam and Bunny yield distinct decomposition solutions, whereas the 
mechanical mounter exhibits similar solutions for both loading condi-
tions. The sub-parts, identified by different colors, were sliced into 
planar layers within the user-defined thickness, whereas the serial 
number defines the search sequence, which is reversed from the printing 
sequence. One thing to mention is that, for the Bunny case, the overhang 
faces connected to the platform B were waved from optimization since 
the default orientation ob was regarded as fixed in this study; therefore, 
it cannot be support-free but only within the allowable threshold 
without changing ob. 

3.2. Printing experiment results 

The test models were physically fabricated using multi-directional 

Fig. 9. Optimized SESEVD solution for L-shaped beam with specific μ1under (a) single-loading and (b) multiple-loading conditions.  

Table 1 
Computational statistics.  

Model Cell 
numbers 

Sampling 
size 

Loading 
condition 
numbers 

Sub-part 
numbers 

Computing 
time 

L-shaped 
beam 

23006 13196 
planes 
(667 
direction) 

1 2 365 s 
2 2 425 s 

Mechanical 
mounter 

16904 16436 
planes 
(667 
direction) 

1 2 288 s 
2 2 276 s 

Bunny 54264 20990 
planes 
(667 
direction) 

1 5 2615 s 
2 6 3102 s  
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printing based on the computational solutions to validate the proposed 
methodology further. Printing paths were generated using the classical 
iso-planar approach on the MATLAB platform, followed by decomposi-
tion and layer slicing. For the printing pattern on any layer, we adopted 
the contour-zigzag filling type, where a few parallel contour paths are 
produced to follow the layer boundary and zigzag paths (i.e., iso-planar 
paths) are then generated to fill the interior of the layer. Table 2 lists the 
processing parameters used in path generation, and the details of the iso- 
planar approach were provided in our previous study [30]. 

A home-built 6-DOF robotic-arm-based multi-axis printer was used 
to conduct multi-directional printing using the FDM technique, where 
the printing paths were received as G-codes. In Fig. 11, (a) displays the 
printing system, where the end-effector of the robotic arm serves as the 
base platform to provide 5DOFs in motion, and the nozzle-integrated 
extrusion system deposits the heated material to fabricate the objects. 
For effective deposition, the building platform temperature was kept at 
60 ◦C, and the filament was heated to 200 ◦C during fabrication. Three 
test models were fabricated based on the simulation outcomes, and their 
printed counterparts are shown in Fig. 11 (b), (c), and (d) correspond-
ingly. Catering to supportless printing, the L-shaped beam with μ1 = 0,
0.2,0.5, the mechanical mounter with μ1 = 0,0.5 and the Bunny with μ1 
= 0.5 were chosen for multi-directional printing. For illustrative pur-
poses, Fig. 12 depicts the printing sequence of the Stanford Bunny 

among multiple parts during the manufacturing process, where each 
sub-part is distinguished by a unique color to indicate its specific build- 
up orientation. The sub-parts were printed in a specific order, beginning 
with the base platform and proceeding with the remaining components. 

The bending tests were conducted on fabricated L-shaped beams and 
the mechanical mounter to measure the ultimate failure forces. As 
shown in Fig. 13, the bending test was conducted on a universal tensile 
machine (UTM), Sintech 10/D from MTS, where the specimen was held 
in place by a fixture placed beneath the load cell. The setups of bending 
tests on specimens (external loading and fixed boundary) were consis-
tent with the computational simulations demonstrated in Figs. 5(a) and 
6(a), respectively, for both the L-shaped beam and the mechanical 
mounter. Two groups of specimens were tested for each model to ac-
count for variability in mechanical testing. During the test, the load cell 
continuously applied increasing forces on the specimen at a 5 mm/min 
displacement rate until the specimen broke. 

The experimental data with the corresponding decomposition results 
for L-shaped beams are reported in the diagram of Fig. 14, where two 
groups of experiments were labeled as #1 and #2. From the extension- 
loading curve, it was observed that the printed PLA specimens were 
linearly elastic and relatively brittle. The maximum load that the L- 
shaped specimens can bear increases with the rise of strength weight μ1 
as a general trend. Table 3 summarizes the L-shaped specimen’s fracture 
characteristics and failure statistics under bending forces with different 
weights. As the specimen photos in Table 3 indicate, the broken speci-
mens showed brittle bending behavior with sudden failure. For the first 
group (#1), the ultimate failure forces for the three cases were measured 
as 660.0 N, 904.1 N and 1136.99 N, respectively. Compared with the 
control group (μ1 = 0), the optimized groups (μ1 = 0.2, μ1 = 0.5) 
demonstrated significant improvements in force bearing capacity, with 
increases of 37.0% and 72.3%, respectively. Similar trends were 

Fig. 10. Optimized SESEVD solutions with strength weight μ1 = 0.5 for (a) an L-shaped beam, (b) the Stanford bunny, and (c) the mechanical mounter under single- 
loading condition and multiple-loading condition. 

Table 2 
Parameters for iso-planar path generation.  

Parameter Raster 
angle 
(◦) 

Layer 
thickness 
(mm) 

Side-step 
width 
(mm) 

Nozzle 
diameter 
(mm) 

Material 
diameter 
(mm) 

Value 90◦ 0.4 1 0.4 1.75  
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investigated in the second group (#2), where the optimized group 
showed improvements of 63.1% and 143.6%. It also can be seen that the 
control group without SESEVD optimization (i.e., without maximal 
principal stress intra-layer alignment and without decomposition 
avoidance in the critical region) exhibits a higher failure probability at 
the partition surface. Accordingly, the SESEVD optimization on me-
chanical properties of layer-wise fabricated parts was thus verified, and 
it was found that the degree of influence on strength enhancement 
increased with μ1. The reason is that, as previously explained in Section 
3.1, the solution for μ1 = 0 only meets support-free metric while another 
two cases (μ1 > 0) also considered strength metric by the principal- 
stress-dependent objective function. In the weighted objective func-
tions (Eq. (11)), the more considerable value of μ1 implies a greater 
degree of strength in optimization, thus leading to the fabricated spec-
imens of μ1 = 0.2. 

The bending tests were also adopted on the mechanical mounter, and 
the resulting experimental data on two groups were presented in Fig. 15 
where the group of μ1 = 0.5 and μ1 = 0 represent the optimized group 
and the control group, respectively. Table 4 presents a graphical illus-
tration with test results of the fractured mechanical mounter specimen. 
To assess the effectiveness of optimization, the bending test results on 
the optimized group and the control group were compared in Table 4. 

The findings show an increase of approximately 140% in ultimate failure 
force, indicating that the optimized group exhibited much better frac-
ture resistance than the control group. Overall, the comparison between 
the optimized and control groups on the mechanical mounter further 

Fig. 11. Physical printing tests by (a) the home-built robotic arm-based multi-axis printing system, and the printed (b) L-shaped beam, (c) Stanford bunny and (d) 
mechanical mounter. 

Fig. 12. The support-free printing sequence for Stanford bunny from the SESEVD solution (5 subparts).  

Fig. 13. Bending test setup with UTM - Sintech 10/D from MTS.  

D. Bi et al.                                                                                                                                                                                                                                        



Additive Manufacturing 69 (2023) 103529

11

evaluates the effectiveness of SESEVD optimization in improving the 
mechanical properties of the specimens. 

The fabrication for the Stanford bunny model was designed to 
perform fixed-directional printing and multi-directional printing ex-
periments on the same printing system, so to demonstrate the desired 
improvements in support structure usage. As the Bunny model has 
distinct overhang features, supporting structures are indispensable 
when performing fixed-directional printing. Therefore, the paths 
(including the support structure) for fixed-directional printing were 
generated using a standard 3D printing software, Ultimaker Cura, with 
80% infill support structures in columnar type. By contrast, the bunny 
part optimized by the proposed SESEVD solution was partitioned into 
five sub-parts to perform multi-directional printing, as presented in 
Fig. 10(b). The printed parts by supportless and support-dependent 
fabrication are shown in Fig. 15, and the experimental data (printing 
time and material costs) are summarized in Table 5. It is seen that the 
bunny parts fabricated by the fixed-directional printing consume 11.8% 
more material and is 10.2% slower than that by the multi-directional 
printing planned by the proposed SESEVD optimization. The reason is 
obvious – support structures consume more deposition material depo-
sition, thus causing longer printing time. Besides, fixed-directional 
printing requires frequent switching between the part itself and the 

supporting structure, as opposed to the limited number of rotations 
between sub-parts required by the decomposition-based approach, thus 
prolonging the printing time. Moreover, as support structures must be 
eradicated after the part is printed, extra processing time and cost will be 
required, in addition to the degraded surface quality on the part 
boundary interfacing the support structures. (Fig. 16) 

4. Conclusions 

We have presented an optimization framework for integrated process 
planning of multi-directional layer-wise additive manufacturing (AM). 
In addition to the support-free metric, strength enhancement is also 
addressed in the proposed framework by utilizing the anisotropic me-
chanical properties of materials considering both the intra-layer and 
inter-layer. The minimization of the proposed measurable objectives is 
solved by a heuristic beam search algorithm cooperating with contin-
uous fabrication requirements. The computational simulations of the 
proposed framework are performed on three representative models, 
followed by real physical FDM multi-axis printing for validation. Based 
on the experimental results, the effects of the stress weight μ1, which is 
the crux of the optimization model for balancing between support 
effectiveness and strength enhancement, are positively confirmed. 

Fig. 14. Experimental comparison of bending tests with different strength weight μ1 on the L-shaped beam.  

Table 3 
Mechanical property of L-shaped beam under bending test with different solutions.  

Strength weight μ1 0 0.2 0.5 

Broken specimens under bending test 
(single group) 

Group number #1 #2 #1 #2 #1 #2 
Ultimate failure force (N) 660.0 509.7 904.12 831.52 1136.9 1241.8 
Improvement - - + 37.0% + 63.1% + 72.3% + 143.6%  
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Finally, bending tests are conducted on the fabricated parts, and the 
results have verified that the proposed optimization framework can in-
crease the strength of fabricated parts while enabling supportless 
fabrication. 

The results presented here are limited to multi-directional printing, 
and only the FDM type of homogeneous and single deposition material is 
considered currently. Regarding future research, barring local gouging, 
printing layers do not need to be planar, or at least though planar but not 
necessarily parallel. Besides, composite AM has already shown a huge 
promising potential due to its superior mechanical properties, such as 
continuous fiber AM, which will be our next focus. 
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Fig. 15. Comparison of bending test results between the SESEVD optimized and non-optimized group on the mechanical mounter.  

Table 4 
Mechanical property of the mechanical mounter under bending test with different solutions.  

Strength weight μ1 0 0.5 

Broken specimens under bending test (single group) 

Group number #1 #2 #1 #2 
Ultimate failure force (N) 696.5 690.5 1689.8 1642.3 
Improvement - - + 142.6% + 137.8%  

Table 5 
Comparison of printing time and material usage.  

Fabricated part Part 
number 

Material usage 
(mm) 

Printing time (s) 

Bunny (fixed- 
directional) 

1 19,249 -  8429.2 - 

Bunny (multi- 
directional) 

5 17,219 ↓ 
11.8%  

7649.1 ↓ 
10.2%  

Fig. 16. The fabricated specimens using a fixed build orientation with supports 
(left) and the optimized decomposition results with multiple printing orienta-
tions without supports (right). 
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