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A B S T R A C T   

Additive manufacturing of continuous fiber enables the control of local material distribution and mechanical 
characteristics. This localized control is realized through fiber path generation and optimization, which is one of 
the core problems in the additive manufacturing of continuous fiber. Current fiber path generation and opti
mization methods mostly try to infill topology-optimized parts or align the fiber with the maximum stress di
rections, which may lead to sub-optimality or time-consuming computations. This paper provides a different 
approach to optimize the fiber path directly by parameterizing it with B-splines and manipulating its control 
points. A finite element model with B-spline fiber parameterization is established, with an analytical fiber-in- 
element probability. This framework streamlines the computation of local and global stiffness and mass 
matrices, enabling effective and efficient prediction of loading responses, stiffness, and natural frequencies. The 
probability framework also allows efficient calculation of the gradients of the stiffness and mass matrices, leading 
to a gradient-based fiber path optimization. The effectiveness and accuracy of both the finite element and 
optimization methods are verified with simulation and experiment case studies. Results demonstrate enhance
ments in stiffness and strength with less fiber usage compared to a commonly adopted principal stress direction 
method.   

1. Introduction 

Continuous-fiber-reinforced parts are widely adopted in aircraft, 
automobiles, energy, and sports applications due to their benefits of 
light weight, high stiffness, and high strength [1,2]. The fiber-reinforced 
parts are typically categorized into standard components (e.g., laminate 
sheets and tubes) or geometrically complex parts. For standard com
ponents, conventional manufacturing methods such as pultrusion, fila
ment winding, and co-weaving provide efficient and cost-effective mass 
production [3]. For geometrically complex parts, manual layup, resin 
transfer molding, spray deposition, and vacuum bagging are typically 
used [3]. However, these conventional methods of manufacturing 
geometrically complex parts typically require a high-cost mold, which 
limits its usage in small batch, customized production. Moreover, these 
methods yield uniform fiber directions, which do not fully exploit the 
anisotropic properties of the fiber [4]. Recently, there is a trend to tailor 

the manufactured parts’ regional and directional mechanical properties 
[5]. This trend of optimizing the part’s reliability, strength, weight, and 
cost requires non-uniform fiber distributions and orientations to achieve 
more complex and coupled goals (e.g., enhanced stiffness/strength [6], 
lower fiber usage [7], tailored frequency response [8], etc.). To satisfy 
these goals, local fiber path manipulation is essential, and it is typically 
achieved by the robotic-based fiber tow steering [9,10] or material 
extrusion (MEX) with continuous fiber. The fiber tow steering is desir
able for high fiber volume ratio, large scale, and low curvature struc
tures (e.g., aircraft fuselage) but may suffer from issues of discontinuity, 
delamination, and wrinkle [9]. On the other hand, the MEX with 
continuous fiber has higher fiber path design degrees of freedom and has 
enhanced performances with fiber paths with higher curvature [11–15]. 
Continuous fiber has also been proven to significantly enhance the 
mechanical properties of fiber-reinforced parts compared to MEX with 
short fiber [16,17] due to its continuity and controllable fiber directions 
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[18–21]. In this research, the MEX with continuous fiber is the core 
focus and application use cases. 

Despite the high degree of freedom of continuous fiber path in the 
MEX process, generation of the fiber and matrix printing path is still 
challenging. Unlike conventional MEX processes where the printing 
paths are generated from straightforward shape and infill ratio infor
mation [22], the generation of fiber paths demands a holistic optimi
zation of the mechanical behavior analysis of non-uniform fiber 
distribution and orientation. This optimization in fiber path is not sup
ported in most commercial MEX print path software [22]. To fill this 
gap, many researchers focus on fiber path generation and optimization 
methods considering the part’s mechanical properties. Fernandes et al. 
[23] developed offset and equally spaced methods to infill the fiber 
paths in a topology-optimized homogeneous part without fiber re
inforcements. Another mainstream approach generates the fiber paths 
by maximizing their alignment with the stress field of a homogeneous 
part without fiber reinforcements [24]. The load-dependent path plan
ning method [25] introduces an optimization problem to align the fiber 
and local load directions. Liu et al. [26] proposed a wave projection 
function to design the fiber paths infill in the stress field. Chen et al. [27] 
converted the stress vector field into a scalar field to compute distributed 
fiber paths directly in the design space. However, these methods are 
based on the stress field of a homogeneous part without fiber rein
forcement; the fiber’s contribution to the stress field is thus not 
considered. Notably, the stress field of a fiber-reinforced part and a 
homogeneous part can be significantly different [28]. Therefore, to 
further achieve various fiber path design objectives, the stress field of 
the fiber-reinforced parts needs to be considered. 

The challenge of exploiting the fiber-reinforced parts arises because 
they have to be calculated with a set of determined fiber paths, which is 
simultaneously the optimization variable. Accordingly, iterative opti
mizations are frequently used to address this issue. Suzuki et al. [29] 
iteratively calculated the stress tensor and stiffness decay vector to 
construct the finer orientations. Kentaro et al. [30] adopted a similar 
idea while introducing the regional fiber volume ratio to represent the 
distance between fiber paths. Hou et al. [31] introduced fiber track 
points to extract the fiber path from every iteration’s stress field; the 
nearest point on the extracted path determines the fiber orientations and 
distributions inside an element. Papapetrou et al. [32] introduced a 
finite element model with variables of fiber direction and density in the 
optimization, and then infilled the topology-optimized parts with 
different continuous fiber placement strategies (i.e., offset, 
equally-space, streamline). These methods consider the fiber’s contri
bution to the stress field but still have two major issues. Firstly, the fibers 
are discretized in a mesh and thus require a significant amount of 
computations to determine the fiber and mesh element relationship. 
This computation can be time-consuming and leads to non-smoothness 
in the optimization, resulting in local optimums. Secondly, this type of 
methods typically requires multi-stage optimization (e.g., generation of 
the optimal stress field and fiber path fitting); the multi-stage optimi
zation may yield sub-optimal solutions. 

To address these issues, this paper proposes a gradient-based 
approach that parametrized the fiber path with B-spline, along with a 
customized finite element model (FEM) with continuous fiber contri
butions. The main contributions of the paper are:  

• This paper establishes a computationally efficient semi-analytical 
FEM compatible with arbitrary fiber paths by an analytically deter
mined fiber-in-element probability.  

• The paper developed a computationally efficient potential function 
in controlling the fiber-to-fiber and fiber-to-boundary distance in 
fiber path optimization.  

• With the semi-analytical FEM with gradients, a gradient-based B- 
spline fiber path optimization compatible with multiple objective 
functions (e.g., compliance, fiber usage, frequency response, etc.) is 
developed and verified in numerical and experimental case studies. 

The paper is structured as follows: The FEM with B-spline parame
terization is detailed in Section 2, in which the local mass and stiffness 
matrix exploiting the analytical fiber-in-element probability and convex 
hull of the B-spline are derived and discussed. The section also covers the 
assembly of the global mass and stiffness matrix to acquire the detailed 
stress, strain, and compliance under certain loading conditions, as well 
as the natural frequencies and the mode shapes of the fiber-reinforced 
parts. In Section 3, the semi-analytical gradients of the FEM concern
ing the B-spline control points are derived. These gradients, with the 
help of a customized fiber distancing function with a potential field, 
enable a gradient-based B-spline fiber path optimization. The FEM with 
B-spline parameterization and the gradient-based B-spline fiber path 
optimization are verified in simulation and experiments in Section 4, 
followed by conclusions in Section 5. 

2. Finite element model with B-spline fiber parameterization 

This paper’s proposed approaches aim to establish a finite element 
model that considers the continuous fiber path parameterized with B- 
spline. The B-spline fiber path through the elements provides local 
reinforcement by changing the local element mass and stiffness 
matrices. This approach encourages fiber path iterations and optimiza
tion as it does not require re-meshing of the fiber and matrix regions. 
Compared to other high-order, high-fidelity models generated by the 
FEM commercial software (e.g., Ansys, Abaqus, etc.), this approach 
enhances computational efficiency and is more compatible with fiber 
path optimizations. The workflow of this approach is shown in Fig. 1. 
The green block in the chart is the main content of this section, which 
includes the establishment of the stiffness and mass matrices in the 
typical FEM and the fiber reinforcement analysis by B-spline parame
terization. As the key to this approach, the pink block introduces the 
identification of the fiber-reinforced candidate by the convex hull of the 
B-spline, and the analytical probability function to locate the fiber in 
each candidate. The increments to the stiffness and mass matrices are 
obtained based on the distribution of each fiber in the elements. Then, 
the global matrices are assembled with the initial matrices and the 
increments. 

2.1. Finite element modeling framework of parts with continuous fiber 

Consider a 2-dimensional (2D) region V that requires a fiber rein
forcement shown in Fig. 2(a). The boundary of the regions is defined as 
∂V . Without loss of generality, three-node triangular elements are 
exploited to discrete the region Ω (the method also applies to other types 
of meshes) shown in Fig. 2(b). It is assumed that the mesh’s character
istic size is significantly smaller than the fiber’s achievable radius of 
curvature. Note that this work focuses on compliance minimization and 
fiber usage optimization; the fiber-reinforced parts are assumed to work 
in their elastic regions. Therefore, slippage in the fiber matrix contact 
regions is omitted during the modeling process. These assumptions are 
widely adopted in fiber-reinforced parts stiffness calculations, such as in 
the volume average stiffness (VAS) model [33]. 

Define the displacement field u(x, y), v(x, y). Inside one triangular 
element, the displacement field is given by 
{

u(x, y) = S1(x, y)u1 + S2(x, y)u2 + S3(x, y)u3
v(x, y) = S1(x, y)v1 + S2(x, y)v2 + S3(x, y)v3

, (1)  

where ui and vi are Node Pi’s displacement in the x and y axes, for 
i=1,2,3 respectively. Define 

(
xi, yi

)
to be the Node Pi’s coordinates, and 

the shape function Si(x, y) is given by: 

Si(x, y) =
1

2A
(ai + bix + ciy), i = 1,2, 3, (2)  

where, 
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A =
1
2
(a1 + a2 + a3) =

1
2
(b1c2 − b2c1), (3)  

⎧
⎨

⎩

a1 = x2y3 − x3y2
b1 = y2 − y3

c1 = − x2 + x3

. (4) 

The coefficients ai, bi, ci for i = 2, 3 follow the same formulas as in Eq. 
(4) by circular alternating the subscript (i.e., 1→2, 2→3, 3→1). The 
displacement field relationship in the eth element is written in the ma
trix form as: 

u(e)(x, y) =
[

u
v

]

=

[
S1 0 S2 0 S3 0
0 S1 0 S2 0 S3

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
S(x,y)

q(e), (5)  

where S(x, y) is shape function matrix and q(e) is the nodal degrees of 
freedom given by: 

q(e) = [ u1 v1 u2 v2 u3 v3 ]
⊤
. (6) 

As the linear displacement relationship indicated in Eq. (1), note that 
the strain field is assumed constant in the triangular element, regardless 
of fiber or the matrix region. The strain is written as: 

ε (e) =
[

εxx
(e) εyy

(e) γxy
(e) ]⊤ = [∂]u(e), (7)  

where [∂] is operator matrix defined as: 

[∂] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
∂x

0

0
∂
∂y

∂
∂y

∂
∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8) 

Substitute Eq. (5) into Eq. (7), the element strain is given by: 

ε (e) = [∂]S(x, y)q(e) = B(x, y)q(e), (9)  

where B(x, y) is the conventional geometry matrix for triangular mesh. 
The formula in Eqs. (1) to (9) satisfies conventional FEM formulations as 
in [34]. 

Unlike the strain relationship that is constant within the matrix and 
fiber region, the stress field σ(x, y) is not consistent in the fiber and 
matrix regions due to their significantly different constitutive relation
ships, i.e., 

σ(x, y) =

⎡

⎣
σxx(x, y)
σyy(x, y)
τxy(x, y)

⎤

⎦ =

{
Dmε when (x, y) ∈ Ωm
Dfε when (x, y) ∈ Ωf

, (10) 

FEM with B-spline fiber parameterization 
(FEM-BFP)

B-spline and
convex hull

establishment

Fiber-reinforced 
candidates 

identification

Analytical 
fiber-in-element 

probability

Fiber-in-element 
distribution

local stiffness 
and mass matrix 

increments

Pre-processing
• Define part
• Generate FEM mesh
• Generate basis functions

Initial stiffness 
and mass matrix 

establishment

B-spline based fiber path 
reinforcement contribution

Output
• The reinforced global 

stiffness and mass 
matrix

Control points

Fig. 1. Finite element model with B-spline fiber parameterization flow chart.  

(a)

(b)

(c)
Fig. 2. Three-node triangular element with fiber.  
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where Dm is the elastic coefficient matrix in the isotropic matrix region 
Ωm and Df is the elastic coefficient matrix in the fiber-reinforced region 
Ωf , respectively. Define the isotropic matrix material with Young’s 
modulus Em and Poisson ratio μ, the elastic coefficient matrix Dm is given 
by: 

Dm =
Em

1 − μ2

⎡

⎢
⎢
⎢
⎣

1 μ 0

μ 1 0

0 0
1 − μ

2

⎤

⎥
⎥
⎥
⎦
. (11) 

Similarly, in the fiber-reinforced region Ωf , the longitudinal and 
transverse Young’s moduli are defined as E1 and E2, respectively. The in- 
plane Poisson ratios are defined as μ12 (μ21 = μ12E2/E1); the shear 
modulus is defined as G12, the elastic coefficient matrix Df is given by: 

Df = T(θ)⊤

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

E2
1

E1 − E2μ2
12

E1E2μ12

E1 − E2μ2
12

0

E1E2μ12

E1 − E2μ2
12

E1E2

E1 − E2μ2
12

0

0 0 G12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
≜Df0

T(θ), (12)  

where θ is the angle between the fiber primary coordinate frame F f to 
the ground frame F 0 shown in Fig. 2(c), and T(θ) is the transformation 
matrix given by: 

T(θ) =

⎡

⎣
cos2θ sin2θ 2sinθcosθ
sin2θ cos2θ − 2sinθcosθ

− sinθcosθ sinθcosθ cos2θ − sin2θ

⎤

⎦. (13) 

The FEM is established via the principle of virtual work. Define the 
vector collection of all nodal degrees of freedom to be q, the eth ele
ment’s nodal displacement q(e) formulates a subset of q defined with a 
selector matrix Te, i.e., 

q(e) = Teq, (14) 

The total potential energy Π expressed by displacement u, strain ε, 
and stress σ given by: 

Π = U − Wb − Wp − Ws − WI

=
1
2

∫

V

ε⊤σdV −

∫

V

u⊤bdV − q⊤p −

∫

∂V

u⊤tSdS −
∫

V

ρü⊤udV  

=
1
2

∫

V

q⊤B⊤DBqdV −

∫

V

q⊤S⊤bdV − q⊤p −

∫

∂V

q⊤SS
⊤tSdS

−

∫

V

ρq̈⊤S⊤SqdV,
(15)  

where U is the strain energy; Wb is the potential body forces work; Wp is 
the potential concentrated loads work; Ws is the potential distributed 
loads work; WI is the potential inertial force work; b is the body weight 
density matrix; p is the concentrated external loads applied at the nodes; 
tS is the surface load, and SS is the shape function matrix evaluated along 
the surface; ρ is the density of an element, and q̈ is the second derivative 
of q with respect to time. Based on the principle of virtual work (i.e., δΠ 
= 0), the FEM dynamic equation is written as: 

Mq̈+Kq = F, (16)  

where both M, K, and F arise from the summation of all elements, i.e., 

M =
∑

e
Te

⊤M(e)Te, (17)  

K =
∑

e
T⊤

e K(e)Te, (18)  

F = p+
∑

e
T⊤

e F(e). (19) 

The local mass matrix M(e), local stiffness matrix K(e), and local 
volumetric and surface force vector F(e) is written as: 

M(e) =

∫

V (e)
ρS⊤SdV, (20)  

K(e) =

∫

V (e)
B⊤DBdV, (21)  

F(e) =

∫

V (e)
S⊤bdV +

∫

∂V (e)
SS

⊤tSdS, (22)  

V
(e) = tAe = t

(
Af + Am

)
, (23)  

where V (e) and ∂V (e) are the element volume and surface regions 
where external load exists; t is the element thickness, Af , Am, and Ae are 
areas of fiber, matrix, and the entire element. From modal analysis, the 
kth mode satisfies 
(
K − ω2

kM
)
Ψk = 0, (24)  

where ωk and Ψk are the corresponding natural frequency and mode 
shape. For static analysis, the inertial term in Eq. (16) is zero, and FEM is 
reduced to the following form: 

KU = F, (25) 

The static form is mostly exploited in the following compliance 
analysis and fiber path optimization. 

2.2. B-spline-based fiber path reinforcement contribution 

2.2.1. B-spline parameterization of fiber path 
Though the conventional FEM formulations can be easily calculated, 

the elastic and mass matrices in the fiber-reinforced region require the 
area of the fiber Af and the orientation of fiber θ. To calculate these 
parameters, the fiber paths need to be represented mathematically, but 
this representation is challenging for optimization since it has infinite 
degrees of freedom. The B-spline provides a compact and shape- 
preserving representation of a curve, effectively reducing the degrees 
of freedom compared to direct sampling. Manipulating a limited portion 
by the control points does not affect the overall shape of the curve, 
increasing the flexibility of the represented paths. Moreover, the convex 
hull of the control points envelops and subdivides the B-spline into 
segments, yielding a local geometric interpretation for the fiber paths. 
The standard B-spline is given by 

c(ξ) =
∑nc

ζ=1
Nζ,m(ξ)pc,ζ, (26)  

where ξ ∈ [0,1] is the B-spline curve parameter, nc is the number of 
control points, pc,ζ is the ζth control point, and Nζ,m(ξ) is the ζth 
normalized m-order B-spline basis function defined as: 

Nζ,1(ξ) =
{

1, ξζ⩽ξ < ξζ+1
0, otherwise , (27)  

Nζ,m(ξ) =
(ξ − ξζ)Nζ,m− 1(ξ)

ξζ+m− 1 − ξζ
+
(ξζ+m − ξ)Nζ+1,m− 1(ξ)

ξζ+m − ξζ+1
. (28) 

Note that ξi is the knot in a non-decreasing sequence of real number 
{

ξ1, ⋯, ξnc+m
}

called knot vector. Assume there are Nf continuous fibers 
inside the reinforced region, the ith continuous fiber is represented by a 
m-order B-spline with n(i)

c control points p(i)
c,1, p

(i)
c,2, ..., p

(i)
c,n(i)c

, where each 

control points p(i)
c,ζ ∈ R2. These control points are concatenated to a 
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control point matrix P(i)
c ∈ Rn(i)c ×2 given by: 

P(i)
c =

[
p(i)

c,1 p(i)
c,2 ⋯ p(i)

c,n(i)c

]⊤
. (29) 

The ith continuous fiber is thus given by: 

c(i)( ξ,P(i)
c
)
= N(i)(ξ)P(i)

c , (30)  

where N(i)(ξ) is the vector combination of the set of basis functions of the 
ith B-spline. Without loss of generality, all the B-spline parameteriza
tions are assumed to have the same order and knot spacing. Therefore, 
the basis functions are identical for the same number of control points 
and knot vector, i.e., N(i)(ξ) = N(j)(ξ) if n(i)

c = n(j)
c . Without loss of gen

erality, the fiber element intersection relationship applies to all fiber 
paths. Therefore, the superscript (i) is omitted in Sections 2.2.2 and 
2.2.3 to reduce equation complexity. 

2.2.2. Probability-enabled stiffness and mass matrix calculation 
In the current framework, following Eqs. (20) and (21), the fiber path 

affects the stiffness and mass matrix via the orientation and areas inside 
an element. These quantities typically require calculating the intersec
tion points of the fiber path and each element [35]. Since the mesh’s 
characteristic size is assumed to be significantly smaller than the fiber’s 
achievable radius of curvature, the orientation inside an element can be 
represented by an average value θ to simplify the calculation, as shown 
in Fig. 2(c). With this assumption, the stiffness matrix in Eq. (21) is 
simplified to 

K(e) = tAfB⊤DfB + tAmB⊤DmB,
Df = T

(
θ
)⊤

Df0T
(

θ
)
.

(31) 

Accordingly, the change of the local stiffness matrix when the fiber 
path intersects is given by: 

ΔK(e) = twLfB⊤
(
Df − Dm

)
B, (32)  

where w is the width of fiber, Lf is the length of fiber in an element. 
Similarly, the mass matrix in Eq. (20) is simplified to: 

M(e) = tAfρfS
⊤S+ tAmρmS⊤S, (33)  

ΔM(e) = tAf
(
ρf − ρm

)
S⊤S = twLf

(
ρf − ρm

)
S⊤S, (34)  

where ρf and ρm are the density of fiber and matrix material. The two 
terms Lf and θ are key to the changes in the mass and stiffness matrices, 
and their semi-analytical relationships with the control points need to be 
established to establish the gradients of FEM. 

Accurate calculations of the intersection points are usually time- 
consuming and create numerical singularities, hindering efficient opti
mization. Moreover, the realistic fiber width and curvature introduce 
errors to the simplified geometrical calculation. Therefore, this section 
establishes a semi-analytical fiber-in-element probability (AFEP) func
tion describing the intersection relationship between the element and 
the fiber under a probability framework. This framework enables effi
cient computation accounting for limited fiber width’s contributions to 
the FEM, as well as its gradients to the fiber path control points. A 
probability function is introduced instead of accurately calculating the 
intersection point of the fiber path and the element. 

Consider a polygon with Np clockwise vertexes p1,p2,⋯,pNp
. A cri

terion of an arbitrary point c inside the polygon is determined with the 
following cross-product conditions: 

(c − pk) × (pk+1 − pk) > 0, k = 1, 2,⋯,Np (35)  

where pNp+1 = p1. These binary criteria shed light on determining fiber 
and element intersections, which is crucial to fiber path optimization. 
Combining these binary relationships in Eq. (35) to a single probability 

function, the AFEP is defined as: 

ψ
(

c,p1,p2,⋯,pNp

)
=
∏Np

k=1
σsig

(
(c − pk) × (pk+1 − pk)

w‖pk+1 − pk‖

)

, (36)  

where ψ
(

c,p1,p2,⋯,pNp

)
approximate the probability of arbitrary 

point c inside the polygon with vertexes given by p1, p2, ⋯, pNp
. The 

binary relationships are replaced by the multiplication of the sigmoid 
function σsig to indicate probability. The sigmoid function is defined as: 

σsig(x) =
1

1 + e− x. (37) 

Note that σsig equals to one and zero as it tends towards positive and 
negative infinity, respectively. This property, along with the normali
zation with the edge length ‖pk+1 − pk‖ and the fiber width w, ensures 
that ψ = 1 when the point c is at least half-width from the boundary, and 
ψ = 0.5 when the point c sits on the boundary of the polygon. This 
continuous probability agrees with the physical fiber and element 
intersection area (as shown in Fig. 3), thus enhancing the fiber optimi
zation’s smoothness. The continuity of the AFEP function is further 
illustrated by a case showing the change in local fiber length Lf and 
stiffness increment 

⃦
⃦ΔK(e)⃦⃦ when the fiber path moving through ele

ments. The movement of the fiber path is represented by the displace
ment percentage Dp illustrated with the red arrow shown in Fig. 4(a). 
The swept triangular elements are numbered, and these elements’ cor
responding fiber length and stiffness increment are plotted in Fig. 4(b). 
In addition, the gradients of these two variables are provided to illus
trate the continuity of the AFEP function. 

With this AFEP function, the intersection region of the B-spline and a 
triangular element no longer needs explicit intersection point evalua
tion. For a set of given control points, the B-spline curve length function 
l(ξ,Pc) is given by: 

l(ξ,Pc) =

∫ ξ

0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pc
⊤Ń (ν)⊤Ń (ν)Pc

√

dν, (38)  

where Ń (ξ) = dN(ξ)/dξ is the derivative of the basis function. The 
length of fiber inside the eth element Lf is given by: 

Lf =

∫ 1

0
ψ
(

c(ξ,Pc),p(e)
1 ,p(e)

2 ,p(e)
3

)∂l(ξ,Pc)

∂ξ
dξ

⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
dl

. (39) 

From the integral format of l(ξ,Pc) in Eq. (38), the derivative of curve 
length is given by: 

∂l(ξ,Pc)

∂ξ
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pc
⊤Ń (ξ)⊤Ń (ξ)Pc

√

. (40) 

The vector approximating the connection between the entry and the 
exiting points is given by: 

Fig. 3. Identification of a fiber path in an element by AFEP function.  
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z =

∫ 1

0
ψ
(

c(ξ,Pc),p(e)
1 ,p(e)

2 ,p(e)
3

)
Ń (ξ)Pcdξ. (41) 

This vector z =
[
zx, zy

]
defines the average fiber direction inside this 

element, and thus is given by: 

θ = arctan
(
zy
/
zx
)
. (42) 

Accordingly, the two critical variables describe the fiber and element 
relationship, Lf and θ, are determined without explicit calculation of the 
intersection points. Inserting these two values into Eqs. (32) and (34) 
enables the calculation of the fiber-reinforced elements. 

2.2.3. Convex-hull enabled calculation simplification 
Although Eq. (39) and (42) provides a way to calculate the critical 

terms Lf , θ, and their gradients, the calculation requires the AFEP of all 
elements, which is not computationally efficient. The B-spline convex 
hull property enables a preliminary selection of the elements that may 
interest the fiber, and thus significantly reduces the computational 
complexity. For a m-order B-spline with nc control points, the fiber path 
can be decomposed into nc − m+1 segments. The jth segments defined 

with the curve parameter ξ ∈
[
ξj+m− 1, ξj+m

]
is merely affected by m 

neighborhood control points defined as: 

P[j]
c =

[
pc,j,pc,j+1, ...,pc,j+m− 1

]⊤
. (43) 

More specifically, these segments are confined with the convex hull 
of P[j]

c , defined as C P[j]
c
. Here, the set of elements that intersect with C P[j]

c 

can be efficiently identified. This is achieved by two steps: (i) find all 
nodes within P[j]

c and their related elements T [j]
1 , and (ii) find the ele

ments that contain the vertices of P[j]
c , defined as T [j]

2 . The set of elements 
with potential intersections is given by: 

T
[j] = T

[j]
1 ∪ T

[j]
2 . (44) 

This selection is no longer a probabilistic relationship, and thus the 
criteria of an arbitrary point c inside a polygon given by Eq. (35) is 
modified as: 

(c − pk) × (pk+1 − pk)

‖pk+1 − pk‖
> − w, k = 1, 2,⋯. (45) 

This modification guarantees that the fiber width’s contribution is 

considered in finding T
[j]. Note that the jth segments only affect the 

elements in T [j]. This leads to a simplification of the Eqs. (39) and (41), 
given by: 

Lf =

⎧
⎪⎨

⎪⎩

∫ ξj+m

ξj+m− 1

ψ ∂l(ξ,Pc)

∂ξ
dξ, when e ∈ T

[j]

0, when e ∕∈ T
[j]

, (46)  

z =

⎧
⎨

⎩

∫ ξj+m

ξj+m− 1

ψŃ (ξ)Pcdξ, when e ∈ T
[j]

0, when e ∕∈ T
[j]

. (47) 

With this convex-hull-enabled calculation of the local stiffness and 
mass matrix, the overall FEM-BFP method is summarized in a pseudo 
algorithm shown in Table 1. 

3. Gradient-based B-spline fiber path optimization 

3.1. Semi-analytical gradients concerning the B-spline control points 

Gradients are crucial in optimization algorithms since they can 
enhance the optimization efficiency and speed. In the current FEM-BFP 
framework with semi-analytical expressions, the stiffness and mass 
matrix gradients with respect to the B-spline control points can also be 
conveniently constructed in Section 3.1.1. To enable desirable fiber-to- 
fiber distancing, a semi-analytical potential function with its gradients 
is also derived in Section 3.1.2. 

3.1.1. Semi-analytical gradients of FEM-BFP 
According to the simplification method in Section 2.2.3, the control 

points P[j]
c of jth convex hull are a part of Pc; the relationship is specified 

by a selector matrix Tj as: 

P[j]
c = TjPc, (48) 

The gradient of the stiffness matrix increments (defined in Eq. (32)) 
with respect to the local control points P[j]

c is given by: 

∂ΔK(e)

∂P[j]
c

= tw

[
∂Lf

∂P[j]
c

B⊤
(
Df − Dm

)
B + LfB⊤ ∂Df

∂P[j]
c

B

]

, (49)  

(a)

(1) (2)

(3)
(4)

(5)

(b)

0 1

Fig. 4. A case of fiber path moving through elements with (a) schematic plot, (b) the changes of local fiber length and stiffness increment with the gradients of 
the changes. 
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Table 1 
FEM-BFP method’s pseudo algorithm.  

Input: geometry data, mesh data, fiber data, material properties, boundary conditions 

Output: , , ,  

Main: 

// Generate homogeneous part’s stiffness and mass matrices 

// Summation of the fiber reinforcement contribution 

for do

for do 

for do

end for

end for 

end for 

// Solution of FEM 
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and the gradient to all control points is specified by: 

∂ΔK(e)

∂Pc
=
∑nc − m+1

j=1

∂ΔK(e)

∂P[j]
c

Tj. (50) 

Similarly, the gradient of the mass matrix is given by: 

∂ΔM(e)

∂P[j]
c

= tw
∂Lf

∂P[j]
c

(
ρf − ρm

)
S⊤S,

∂ΔM(e)

∂Pc
=
∑nc − m+1

j=1

∂ΔM(e)

∂P[j]
c

Tj.

(51) 

Without loss of generality, the gradient applies to all convex hulls. 
Therefore, the superscript [j] is omitted in this section to reduce 
equation complexity. The two partial derivatives ∂Lf/∂Pc and ∂Df/∂Pc 

are derived from Eqs. (39) and (46) as: 

∂Lf

∂Pc
=

∫ ξj+m

ξj+m− 1

(
∂ψ
∂c

∂c
∂Pc

∂l
∂ξ

+ ψ ∂2l
∂ξ∂Pc

)

dξ. (52) 

The introduction of the continuous AFEP function enables the 
convenient calculation of the term ∂ψ/∂c. Along with Eq. (40), the first 
term in Eq. (52) is given by: 

∂ψ
∂c

∂c
∂Pc

∂l
∂ξ

=
∂ψ
∂c

N
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pc
⊤Ń (ξ)⊤Ń (ξ)Pc

√

, (53)  

while the second term is given by: 

ψ ∂2l
∂ξ∂Pc

= ψ Ń (ξ)⊤Ń (ξ)Pc
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Pc
⊤Ń (ξ)⊤Ń (ξ)Pc

√ . (54) 

Apart from the term ∂Lf/∂Pc, the term ∂Df/∂Pc is calculated with the 
chain rule: 

∂Df

∂Pc
=

∂Df

∂T
∂T
∂θ

∂θ
∂Pc

. (55) 

Due to the definition of Df in Eq. (31) and Df0 in Eq. (12), the first two 
terms are conveniently calculated as: 

∂Df

∂T
= 2Df0T, (56)  

∂T
∂θ

=

⎡

⎣
− 2cosθsinθ 2cosθsinθ 2cos2θ − 2sin2θ
2cosθsinθ − 2cosθsinθ 2sin2θ − 2cos2θ

sin2θ − cos2θ cos2θ − sin2θ − 4cosθsinθ

⎤

⎦. (57) 

The gradient of the direction is given by: 

∂θ
∂Pc

=
∂θ
∂z

∂z
∂Pc

, (58)  

where, 

∂θ
∂z

=

[
− zy

z2
x + z2

y
,

zx

z2
x + z2

y

]

, (59)  

∂z
∂Pc

=

∫ ξj+m

ξj+m− 1

(
∂ψ
∂c

∂c
∂Pc

Ń (u)Pc + ψŃ (u)
)

dξ. (60) 

With these semi-analytical gradients defined in Eqs. (49) to (60), the 
mass and stiffness matrix increments’ gradients with respect to the fiber 
control points are established. 

3.1.2. Fiber distancing control via a potential field 
Except for the fiber path’s contribution to the stiffness matrix, the 

manufacturing constraints also need to be considered in the optimiza
tion. The constraints include the distances between fibers and from the 
fiber to the part’s boundary, which reserve sufficient space to avoid 

manufacturing defects like fiber overlapping and intersection. On the 
other hand, the distance between fibers needs to be reduced to enhance 
the local fiber density and achieve optimal reinforcement effect. 
Therefore, a potential field is introduced to the fibers, which provides an 
attraction at a far distance and a repulsion at a close distance. A potential 
(as illustrated in Fig. 5) is defined as: 

φ = e
− p1

(
r

wp
− 1
)

− e
− p2

(
r

wp
− 1 − rg

)

, (61)  

where wp is the reference width, p1 represents the intensity of repulsion, 
p2 represents the intensity of attraction, r is the distance between two 
points, and rg is a dimensionless length parameter of the attraction re
gion. Without loss of generality, the potential between the first two fiber 
paths with control points P(1)

c and P(2)
c is written as: 

ϕ =

∫ 1

0

∫ 1

0
φ
(
r
(
Pr
(
ξ(1), ξ(2),P(1)

c ,P(2)
c
) ) )

dξ(1)dξ(2), (62)  

r =
⃦
⃦N
(
ξ(1)
)
P(1)

c − N
(
ξ(2)
)
P(2)

c

⃦
⃦, (63)  

Pr =
[
N
(
ξ(1)
)
P(1)

c ,N
(
ξ(2)
)
P(2)

c
]⊤
. (64) 

The relations apply to arbitrary two fibers in evaluating their dis
tance. For the convenience of calculating the semi-analytical gradient, 
the control points are concatenated as: 

Pϕ =
[
P(1)

c ,P(2)
c
]⊤
. (65) 

Then, the gradient of Eq. (62) is given by: 

∂ϕ
∂Pϕ

=

∫ 1

0

∫ 1

0

∂φ
∂r

∂r
∂Pr

∂Pr

∂Pϕ
dξ(1)dξ(2). (66) 

According to Eq. (61), the first term of Eq. (66) is given by: 

∂φ
∂r

=
p2

wpe
p2

(
r

wp
− 1
) −

p1

wpe
p1

(
r

wp
− 1 − rg

). (67) 

The second term ∂r/∂Pr in Eq. (66) is conveniently calculated ac
cording to the norm of the vector, while the third term is given by: 

∂Pr

∂Pϕ
=

[
N
(
ξ(1)
)

0
0 N

(
ξ(2)
)

]

. (68) 

Similarly, a potential function solely providing repulsion is intro
duced between the fiber and the boundary defined as: 

φB = e
− p1

(
r

wb
− 1
)

, (69)  

where wb is the reference width for boundary distancing. For a fiber 
path, the potential towards the boundary is written as: 

ϕB =

∫

∂V

∫ 1

0
φ(r(c(ξ,Pc),pB ) )dξdS, (70)  

r = ‖c − pB‖, (71) 

Repulsion
Fiber width

Attraction

Fig. 5. The potential function for fiber distancing control.  
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where pB is a point on the part’s boundary. Accordingly, the gradient is 
given by: 

∂ϕB

∂Pc
=

∫

∂V

∫ 1

0

∂φ
∂r

∂r
∂c

∂c
∂Pc

dξdS, (72)  

where the first term is given by: 

∂φ
∂r

= −
p1

wbe
p1

(
r

wb
− 1
). (73) 

The formula for ∂r/∂c is the same as the term ∂r/∂Pr in Eq. (66), and 
∂c/∂Pc = N. With these potential functions, the fiber distancing control 
for fiber path optimization is established. 

3.2. Optimization setup 

The optimization of fiber paths aims to enhance the part’s mechan
ical properties by manipulating the fiber’s control points. The initial 
position of the control points is important for gradient-based optimiza
tion since the optimization can have a nonconvex problem, which leads 
to trapping in the local minimum. Considering the control points located 
in the low-stress region, the gradient of the stiffness matrix would have 
gentle slopes, and the tendency of fiber to move would be negligible. The 
initial position of the control points needs to appear near the high-stress 
region. There are several methods to generate the initial fiber paths. This 
paper uses a stress-based method called the principal stress direction 

method (PSD) [27,32] due to its straightforward fiber alignment to the 
load transfer region, improving computational efficiency. The overall 
optimization is defined as: 

min
Pc

J = μ1c + μ2Lf + μ3fω(ωk)

subject to ϕ < ϕ(w)

ϕB = 0

⎫
⎬

⎭
, (74)  

where the major objectives are the total compliance c = FU, the fiber 
length Lf , and the natural frequency ωk of kth mode;μ1, μ2, and μ3 are the 
optimization weight for each individual term, respectively. The function 
fω refers to a customized penalty function on the natural frequencies of 
the structure. Although the equations of M(e) and ∂M(e)/∂Pc are given, 
the natural frequency ωk is obtained with the calculation of eigenvalue 
analysis, which could not provide a gradient formula. For those cases, 

 

Gradient-based B-spline fiber path optimization (GBFO)

No
Yes

ith fiber

Converge 

Conjugate gradient 
direction control 

points update

Fiber paths 
separation

Fiber distancing potential 
function and its gradient

Objective function 
evaluation 

Solution of 
FEM

Summation of 
multi-fiber 

contribution

Pre-processing
• Define part
• Generate FEM mesh
• Generate basis functions

Optimization Setup
• Define objective J
• Initialize control points
• Define loading boundary 

conditions 

Output
• Optimized fiber paths 

with FEM solution
• Part’s stiffness, stress, 

and strain
• Part’s modal information

Solver 1

Solver 2

Solver 3

Solver i

FEM-BFP

Fig. 6. The gradient-based B-spline fiber path optimization flow chart.  

Table 2 
The material parameters of fiber and matrix material.  

Parameter PLA Continuous carbon fiber-reinforced 
thermoset polymer 

Diameter [mm] 1.75 0.35 
Density [g/cm3] 1.25 1.51 
Elastic modulus [MPa] 

(E1) 
2205.18 108,566.28 

Elastic modulus [MPa] 
(E2) 

/ 54,283.14 

Tensile Strength [MPa] 49.8 2206 
Poisson ratio 0.36 0.4  

PolymersCo-extrusion

Fiber cutter

Fiber-reinforced
composite

Fusion 
chamber

Heater

Composite carbon fiber

Fig. 7. Anisoprint composite A4 and co-extrusion illustration [36].  
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the numerical gradient of this frequency-related term can be exploited. 
Except for these objectives, note that the number of fibers in this opti
mization problem can be freely chosen. This could be achieved by 
setting the number of fibers Nf as an additional integer optimization 
variable, yielding a mixed-integer optimization problem. In a practical 
setting, tradeoff studies could determine the number of fibers with 
computationally efficient fiber path generation methods (e.g., principal 
stress direction method, etc.). The inter-fiber potential ϕ and the fiber- 
to-boundary potential ϕB are the manufacturing constraints to control 
the distance of printing toolpaths. Based on the FEM-BFP discussed in 
Section 2 and the gradient evaluation in Section 3, the optimization in 
Eq. (74) is conveniently solved via various optimization algorithms (e.g., 
Truncated-Newton algorithm, Conjugate gradient algorithm, Quasi- 
Newton algorithm, etc.). Since these algorithms are used for uncon
strained optimization, ϕ and ϕB are added to the objectives as soft 
constraints for fiber distance control. The overall gradient-based B- 
spline fiber path optimization (GBFO) process is shown in Fig. 6. The 
process iteratively evaluates the objective function by implementing 
FEM-BFP. Each fiber path’s contribution is solved and added to solve the 
mass and stiffness matrices, as well as their gradients. The objective 
function adds the solution and the constraints of fiber distancing po
tential. Once converged, the optimized control points P*

c and the opti
mized part FEM information are outputted for manufacturing. 

4. Simulation and experiment verification 

4.1. Simulation and experiment platform 

Both the proposed FEM-BFP and the GBFO run on a desktop com
puter with an 8-core R7–5800 H CPU. The matrix material and the 

continuous fiber are selected to be polylactic acid (PLA) and carbon 
fiber, respectively. Their mechanical properties are summarized in  
Table 2. The continuous-fiber-reinforced parts are fabricated by Aniso
print Composite A4 printer. This printer is based on a co-extrusion 
technology to realize the continuous fiber printing shown in Fig. 7. 
The slicing software AURA adjusts the printing speed, layer height, and 
temperature for fiber and PLA filaments with the process parameters 
shown in Table 3. Note that the layer thickness of the fiber is twice the 
thickness and the width of the matrix material. This arises from the 
geometry of the continuous fiber prepreg. The tensile and bending test is 
performed on the MTS Sintech 10/D universal test machine (Fig. 8(a), 
(b)) with a speed of 2 mm/s. The impact hammer modal tests are per
formed with the PCB356A17 accelerometer, the Model 086C03 impact 
hammer, and the Adash VA4 Pro vibration analyzer shown in Fig. 8(c). 

4.2. FEM-BFP verification 

To verify the FEM-BFP model, two representative specimens are 
designed and fabricated.  

• The dumbbell-shaped specimen following ASTM D638 standard [37] 
with four fiber paths is shown in Fig. 9. The part is mainly for tensile 
testing to illustrate the accuracy of FEM-BFP. 

• The loop-shaped specimen [27] and its representative loading con
ditions are shown in Fig. 10. The part is used to verify the modal 
response predictions of FEM-BFP in this section and further GBFO in 
Section 4.3. 

The FEM-BFP is established in MATLAB with an open-source mesh 
generator named KMG [38]. The reference element edge length is 2 mm. 
The calculated stiffness is compared to a commercial software Abaqus 

Table 3 
The printing process parameters.  

Nozzle 
temperature 
[◦C] 

Print 
speed 
[mm/ 
s] 

Matrix 
material 
layer 
thickness 
[mm] 

Composite 
fiber layer 
thickness 
[mm] 

Matrix 
material 
nozzle 
diameter 
[mm] 

Composite 
fiber nozzle 
diameter 
[mm] 

210 40 0.17 0.34 0.4 0.8  

Fig. 8. The experiment platforms of (a) tensile test and (b) impact hammer 
modal test. 

165 mm

19 mm
13 mm

57 mm

Thickness: 3 mm

Fig. 9. The dumbbell-shaped tensile specimen with four fiber paths.  

150 mm30 mm

10 mm

Load

50 mm

Thickness: 
3 mm

Fig. 10. The loop-shaped specimen and loading conditions.  

Table 4 
The comparison between FEM-BFP, Abaqus, and the tensile experiment of the 
dumbbell-shaped specimen.   

BFP-FEM Abaqus Experiment 

Element number 1426 39,564 / 
Stiffness [MPa] 13,581.05 13,043.04 13,120.99 
Modeling error 3.51 % 0.59 % / 
Computation time [s] 7.8 14.1 /  
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and the experimental MTS Sintech 10/D tensile test (shown in Fig. 8(a)). 
The comparison results for the dumbbell-shaped specimen are 

detailed in Table 4. The proposed FEM-BFP method achieves similar 
levels of accuracy compared to the Abaqus simulations with signifi
cantly fewer elements. The number of elements in Abaqus is tuned to the 
point of convergence. The computational time of the FEM-BFP method is 
also less than the Abaqus method, while providing additional gradient 
information with respect to the fiber control points. 

To verify the loop-shaped parts shown in Fig. 10, a set of fiber paths 
is created by the PSD method. The PSD method obtains a tensile stress 
field by selecting the principal stresses of elements since the fiber has 
higher stiffness and strength under tensile conditions than compression 
conditions [27]. Then, the stress field is filled by streamlines with 
aligned directions to the stress direction [32]. An open-source B-spline 
conversion toolbox converts the streamlines into control points. The 
uniform knot vector is defined before the conversion, determining the 
number of control points to ensure sufficient degrees of freedom and 
computational efficiency. The position of the control points is also 
determined based on the shape of the streamline and the knot vector. 

In the modal analysis, the calculated natural frequencies and mode 
shapes are shown in Fig. 11. To acquire these mode shapes, impact 
hammer modal tests with different impact locations, directions, and 
accelerometer installation directions are performed, as shown in Fig. 12. 

Note that the thickness of the part is also increased to 8 mm to reduce 
the interference vibration in the thickness direction for the impact 
hammer modal test. According to the mode shape in the simulation, the 
accelerometer is horizontally installed on the top of the loop-shaped part 
for the first mode with a horizontal impact shown in Fig. 12(a). Vertical 
impact and accelerometer installation are adopted for the second mode, 
as shown in Fig. 12(b). For the third and fourth modes, the accelerom
eter is horizontally installed on the side of the loop-shaped part, with the 
impact introduced from the side (Fig. 12(c)). In addition, for these high- 
frequency modes, a steel tip is used instead of plastic tips to introduce 
more impact energy at the high frequencies. The magnitudes of the 
frequency response function are shown in Fig. 13, and the natural fre
quencies are shown in Table 5. The natural frequencies are calculated 
from the resonant frequencies given by: 

ωn =
ωr

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
1

2Q

)2
√ , Q =

ω0

ω2 − ω1
, (75)  

where ωn is the natural frequency, ωr is the resonant frequency, and Q is 
the damping factor. The 3-dB rule calculates Q by looking at 3-dB-down 
frequencies ω1 and ω2 from the peak frequency ω0 [39]. According to 
Table 5, the modal response predictions are verified by the experiment. 
The errors are observed to be less than 8 %, which arise from the 
imperfect fiber-matrix interface unavoidable in the manufacturing 
process, which is omitted in the FEM-BFP formulations. Other resonant 
peaks with low amplitudes are also observed in the frequency response 
function. These frequencies are from harmonics and 3D mode shapes 
that are not considered in the current FEM-BFP model. 

Fig. 11. First four mode shapes and natural frequencies of the loop-shaped part 
with FEM-BFP. 

Accelerometer
Impact 

hammer

(a) (b) (c)

Plastic tip
Steel tip

Fig. 12. The impact hammer modal test setup for (a) the first mode, (b) the 
second mode, (c) the third and fourth high-frequency modes. 

1st mode
2nd mode

3rd mode

4th mode

Fig. 13. The frequency response of the loop-shaped specimen in the impact 
hammer modal tests. 

Table 5 
Comparing natural frequencies of the loop-shaped specimen from FEM-BFP and 
the impact hammer modal tests.   

1st mode 2nd mode 3rd mode 4th mode 

Resonant frequency [Hz]  210.5  1463  2301  3000 
Damping ratio 1.78 % 0.09 % 0.09 % 0.6 % 
Natural frequency [Hz] 

(Experiment)  
210.53  1463  2301  3000.05 

Natural frequency [Hz] 
(FEM-BFP simulation)  

217.72  1571.82  2453.66  2997.75 

Model deviation 3.42 % 7.44 % 6.63 % 0.08 %  

Table 6 
The parameters for GBFO for the looped specimen.  

m nc μ1 [J− 1] μ2 [mm− 1] wp wb p1 p2 rg 

5 25 3 0.1 1.96 0.175 9.5 5.9 0.5  
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4.3. GBFO simulation and experiment verification 

4.3.1. Loop-shaped specimen case study 
The gradient-based optimization program is implemented with the 

Poblano optimization toolbox [40]. The load boundary condition is 
applied on the top and bottom of the part for the tensile simulation. The 
optimization in this section compares the PSD and the GBFO methods. 
According to the optimization setup, the detailed GBFO parameters are 
listed in Table 6. The B-spline’s order m and the number of control points 
nc are selected to ensure the fiber’s degrees of freedom. The parameters 
μ1 and μ2 are selected based on their representative values, with a slight 
emphasis on μ1 to highlight the desire to enhance stiffness. The terms wp, 
p1, p2, and rg are designed to ensure that the potential function is close to 
zero at the fiber width and illustrates clear repulsion and attraction re
gions, as Fig. 5 shows. The term wb is designed for the minimum distance 
between the fiber and the boundary. A simple case is performed to 
ensure the effectiveness of the potential function. The objective func
tion’s gradient change is recorded when moving a control point in the x 
direction shown in Fig. 14. The required minimum distance is 0.35 mm, 
which equals the width w of a continuous carbon fiber-reinforced ther
moset polymer. The gradient increases first when fiber paths move 
closer to the high-stress region due to the stiffness objective, while its 
direction reverses to avoid overlapping when the distance is close to the 
width. The tradeoff study is performed with a minimum fiber distance of 
0.4 mm, and the stiffness with increasing numbers of fibers and its 
contribution to unit length are plotted in Fig. 15. It is observed that the 
return fiber reinforcement shrinks as the number of fiber paths in
creases. Based on this study, the number of fiber paths for the part is 
selected to be eight, formulating an effective tradeoff between stiffness 
and fiber usage. The GBFO converges after 300 iterations. In each iter
ation, the objective is evaluated at least four times to update the gradient 
direction with an average iteration calculation time of 60 s 

The optimized fiber paths with the GBFO methods, compared to the 
PSD method, are plotted in Fig. 16. The corresponding von Mises stress 
field is also plotted with the FEM-BFP method, providing the stiffness 
matrices. Note that both the PSD and GBFO methods generate symmetric 
fiber paths due to the tensile loading conditions. The fiber paths opti
mized with the GBFO method move close to each other in the middle and 
neck positions of the specimen. These movements show the tendency of 
fiber to concentrate at the high-stress region, exploiting the fiber’s 

anisotropic properties to enhance stiffness with reduced fiber usage. 
Correspondingly, the stiffness of the part generated from the GBFO 
method illustrates a 27 % enhancement in its tensile direction compared 
to the PSD method, while reducing 3.9 % of fiber usage. 

The fiber path generated from PSD and GBFO methods are manu
factured with the Anisoprint A4 printer discussed in Section 4.1. The 
specimen has ten layers, including six fiber-reinforced layers and four 
matrix material layers. To streamline the printing and testing process, 
pure matrix layers are printed on the top and bottom of the specimen. 
The classical laminate theory (CLT) [41] is introduced to calculate the 
actual stiffness of the fiber-reinforced layer to compare the simulation 
and experiment results. Define the stiffness of the composite layers and 
the matrix layers are Kc and Km, respectively, the overall part’s stiffness 
is given by: 

KT = Kchc +Kmhm, (76)  

where hc and hm are the total height of the fiber-reinforced and matrix 
material layer. Accordingly, the stiffness of the pure composite layers is 
given by: 

Kc =
KT − Kmhm

hc
. (77) 

Multiple loop-shaped specimens are printed with the fiber from PSD 
and GBFO methods, as shown in Fig. 17. During the tensile tests, the 
force-displacement relationships are each the average of three speci
mens from PSD and GBFO methods shown in Fig. 18. The part with the 
GBFO method achieves higher stiffness and strength than the PSD 

Control 
point

1.03 = 0.36 mm

0.36 mm

Fig. 14. Change of objective’s gradient when the minimum distance between fibers decreases.  

Fig. 15. The stiffness and the stiffness regarding fiber length of the loop-shaped 
specimen with the PSD method. 
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method. The corresponding stiffness of the composite layers is calcu
lated with Eq. (77) and is summarized in Table 7. Note that the FEM-BFP 
method provides a relatively accurate estimation of the stiffness of the 

parts: its prediction errors with the PSD and the GBFO fiber paths are 
6.8 % and 0.9 %, respectively. The initial fiber paths were generated by 
the PSD method, which can be considered a close-to-optimal solution. 
Hence, the enhancement from the initial fiber paths was not as signifi
cant as the optimization result from the unoptimized paths. In the tensile 
test, the GBFO achieves 17.3 % increases in stiffness and 8.1 % en
hancements in strength, highlighting the effectiveness of the proposed 
method. 

4.3.2. Curved cantilever beam case study 
An additional curved cantilever beam specimen, inspired by an 

aircraft seat support beam component, is introduced to highlight the 

PSD GBFOMatrix

Fig. 16. PSD and GBFO fiber paths and stress fields with FEM-BFP.  

Fig. 17. The loop-shaped specimens with fiber paths generated from the PSD 
and the GBFO methods. 

Fig. 18. The force-displacement relationship of the two loop-shaped specimens 
(with PSD and the GBFO methods) in tensile tests. 

Table 7 
The optimization result of the loop-shaped specimen with four fiber paths on 
each side.   

PSD 
method 

GBFO 
method 

Enhancement 
(reduction) 

Stiffness (FEM-BFP) [N/ 
mm]  

1493.1  1896.7 27 % 

Stiffness (Tensile tests) 
[N/mm]  

1603.1  1880.5 17.3 % 

Peak load (Tensile tests) 
[N]  

2504.7  2706.5 8.1 % 

Fiber usage [mm]  1137.8  1093.4 − 3.9 %  

165 mm
18 mm

20 mm

67 mm

70.07 mm

112.5 mm

Fig. 19. Curved cantilever beam schematics and loading condition.  
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proposed methods. The beam’s schematics and representative loading 
conditions are shown in Fig. 19. The thickness of the beam is 5 mm. 
Similar to the loop-shaped specimen, the detailed GBFO parameters of 
this beam are listed in Table 8. The number of fiber paths is determined 
to be eight, according to the tradeoff study shown in Fig. 20. The GBFO 
converges after 181 iterations. The computational speed of each itera
tion is similar to the loop-shaped specimen. 

The PSD and GBFO fiber paths are plotted in Fig. 21. The corre
sponding von Mises stress field is also plotted with the FEM-BFP method, 
providing the stiffness matrices. The fiber paths in the beam also tend to 
concentrate on the high-stress region close to the upper boundary. 
Correspondingly, the stiffness of the part generated from the GBFO 
method illustrates a 39.2 % enhancement in its bending direction 
compared to the PSD method while keeping the same fiber usage. 
However, the optimized fiber paths have sharp angles, which can 

weaken the manufacturing quality[42]. A curvature constraint is 
introduced to the objective function as a soft constraint, which assumes 
the path’s curvature by the angle of any three consecutive control 
points. The curvature constraint κ is given by: 

κ =
∑nc − 1

i=2
σκ

(

arccos

((
pc,i− 1 − pc,i

)
⋅
(
pc,i+1 − pc,i

)

⃦
⃦pc,i− 1 − pc,i

⃦
⃦
⃦
⃦pc,i+1 − pc,i

⃦
⃦

))

,

σκ(r) = aκ

(

1 −
1

1 + e(− pκr+κr)

)

,

(78)  

where the angle of three consecutive control points is r. The potential 
function σκ is typically zero but increases significantly when the angle is 
larger than the constraint. The constraint value is forty degrees defined 
by the parameters pκ = 10 and κr = − 0.3; the amplitude aκ = 50000 
controls the function’s increment. The curvature-constrained fiber paths 
avoid the sharp angle compared with the original GBFO result, as shown 
in Fig. 22. On the other hand, the curvature-constrained result achieves 
a 17 % enhancement of the part’s stiffness, which is lower than the 
original result. Note that the optimized fiber paths are connected when 
printing, leading to sharp angles. This problem of balancing the 

Table 8 
The parameters for GBFO for the curved cantilever beam.  

m nc μ1 [J− 1] μ2 [mm− 1] wp wb p1 p2 rg 

5 20 0.1 0.08 1.96 0.175 9.5 5.9 0.5  

Fig. 20. The stiffness and the stiffness regarding fiber length of the curved 
cantilever beam with the PSD method. 

PSD

GBFO

Matrix

Fig. 21. Curved cantilever beam stress fields with FEM-BFP and fiber paths generated with PSD and GBFO.  

Curvature-
constrained Original GBFO

Fig. 22. Curved cantilever beam stress fields with FEM-BFP and fiber paths 
generated with curvature-constrained GBFO. 
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mechanical objectives and manufacturing quality could be addressed by 
separating the optimized paths and reconnecting at the turning points. 

Following the simulation, the PSD and GBFO methods each printed 
three specimens for the bending test, as shown in Fig. 23. The test result 
is summarized in Table 9, and the force-displacement relationships are 
shown in Fig. 24. In the bending test, an 11.73 % enhancement is 
observed. Note that the beam’s stiffness from the GBFO method is 6.9 % 
lower than the prediction. This error is mainly caused by the over
estimation of the compressive performance of the fiber. The GBFO 
method assumes the stiffness of fiber under compression is equivalent to 
its tensile stiffness. The initial fiber paths generated by the PSD method 
try to avoid the compression stress field by tracing the positive stress, 

but the GBFO method tends to cover the high-stress region without 
distinguishing. This type of error could be addressed by introducing the 
separation strategy to analyze the compressive region with different 
material properties. Due to the large deformation in the test, the pre
dicted stiffness represents the stiffness at the initial elastic deformation 
stage. The following mechanical behavior can be predicted by iteratively 
updating the FEM equations during the part’s deformation. Moreover, 
the curved cantilever beam case observes higher peak force and larger 
fracture displacement of specimens from the PSD method than the GBFO 
method. This arises because more shear force is applied at the matrix 
and fiber bonding interface. Therefore, the early failure of the GBFO 
method arises from its relatively close fiber layouts. The optimization 
problem optimizes compliance, and the ultimate strength is not the 
objective addressed in this work. The minimum compliance objective (i. 
e., stiffness optimization) is a standard objective for topology optimi
zation in most engineering cases and thus is adopted in the GBFO 
method based on the standard FEM framework. The established FEM in 
this work describes other mechanical behaviors, such as natural fre
quency, weight, and flexibility of the part, which can be alternative 
objectives. 

5. Conclusion 

This paper addressed the continuous fiber path optimization problem 
in additive manufacturing by establishing a semi-analytical finite 
element model with B-spline fiber parameterization (FEM-BFP) and 
gradient-based fiber path optimization (GBFO). The FEM-BFP defined an 
analytical fiber-in-element probability, thus bypassing the computa
tionally intensive determination of fiber-element intersection. The 
probability, along with the convex hulls of the B-spline, enabled a 
convenient evaluation of the local stiffness and mass matrix increments. 
These increments were assembled to acquire the global stiffness and 
mass matrices, leading to the effective and efficient prediction of loading 
responses, stiffness, natural frequencies, etc. The accuracy and effec
tiveness of the FEM-BFP method were verified compared with com
mercial software Abaqus, tensile tests, and impact hammer modal tests. 
With the FEM-BFP and its probabilistic framework, the gradients of the 
stiffness and mass matrix regarding the fiber B-spline control points 
were conveniently established, leading to GBFO with objective functions 
minimizing compliance and fiber usage. Additional constraints on the 
fiber-to-fiber and fiber-to-boundary distances were also introduced to 
the optimization via a continuous potential function with explicit gra
dients. The results of GBFO were compared with a principal stress di
rection method, generating the fiber paths that align with the maximum 
stress direction. In the simulation and experiments, the parts with fiber 
generated with the GBFO method illustrated an enhancement in stiffness 
with less fiber usage. 
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Fig. 23. The beams with fiber paths generated from the PSD and the 
GBFO methods. 

Table 9 
The optimization result of the beams with eight fiber paths.   

PSD 
method 

GBFO 
method 

Enhancement 
(reduction) 

Stiffness (FEM-BFP) [N/ 
mm] 

22.0061 25.7503 17.01 % 

Stiffness (Bending tests) 
[N/mm] 

21.4528 23.97 11.73 % 

Peak load (Bending tests) 
[N] 

284.4 243.4 − 14.41 % 

Fiber usage [mm] 1160.8 1132.1 − 2.47 %  

Fig. 24. The force-displacement relationship of the curved cantilever beam 
(with PSD and the GBFO methods) in bending tests. 
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González, Tensile properties and failure behavior of chopped and continuous 
carbon fiber composites produced by additive manufacturing, Addit. Manuf. 26 
(2019) 227–241, https://doi.org/10.1016/j.addma.2018.12.020. 

[23] R.R. Fernandes, N. van de Werken, P. Koirala, T. Yap, A.Y. Tamijani, M. Tehrani, 
Experimental investigation of additively manufactured continuous fiber reinforced 
composite parts with optimized topology and fiber paths, Addit. Manuf. 44 (2021) 
102056, https://doi.org/10.1016/j.addma.2021.102056. 

[24] H. Zhang, D. Yang, Y. Sheng, Performance-driven 3D printing of continuous curved 
carbon fibre reinforced polymer composites: a preliminary numerical study, 
Compos. Part B Eng. 151 (2018) 256–264, https://doi.org/10.1016/j. 
compositesb.2018.06.017. 

[25] T. Wang, N. Li, G. Link, J. Jelonnek, J. Fleischer, J. Dittus, D. Kupzik, Load- 
dependent path planning method for 3D printing of continuous fiber reinforced 
plastics, Compos. Part A Appl. Sci. Manuf. 140 (2021) 106181, https://doi.org/ 
10.1016/j.compositesa.2020.106181. 

[26] T. Liu, S. Yuan, Y. Wang, Y. Xiong, J. Zhu, L. Lu, Y. Tang, Stress-driven infill 
mapping for 3D-printed continuous fiber composite with tunable infill density and 
morphology, Addit. Manuf. 62 (2023) 103374, https://doi.org/10.1016/j. 
addma.2022.103374. 

[27] X. Chen, G. Fang, W.-H. Liao, C.C.L. Wang, Field-based toolpath generation for 3d 
printing continuous fibre reinforced thermoplastic composites, Addit. Manuf. 49 
(2022) 102470, https://doi.org/10.1016/j.addma.2021.102470. 

[28] T. Heitkamp, S. Kuschmitz, S. Girnth, J.-D. Marx, G. Klawitter, N. Waldt, T. Vietor, 
Stress-adapted fiber orientation along the principal stress directions for continuous 
fiber-reinforced material extrusion, Prog. Addit. Manuf. 8 (2022) 541–559, https:// 
doi.org/10.1007/s40964-022-00347-x. 

[29] T. Suzuki, S. Fukushige, M. Tsunori, Load path visualization and fiber trajectory 
optimization for additive manufacturing of composites, Addit. Manuf. 31 (2020) 
100942, https://doi.org/10.1016/j.addma.2019.100942. 

[30] K. Sugiyama, R. Matsuzaki, A.V. Malakhov, A.N. Polilov, M. Ueda, A. Todoroki, 
Y. Hirano, 3D printing of optimized composites with variable fiber volume fraction 
and stiffness using continuous fiber, Compos. Sci. Technol. 186 (2020) 107905, 
https://doi.org/10.1016/j.compscitech.2019.107905. 

[31] Z. Hou, X. Tian, J. Zhang, Z. Zheng, L. Zhe, D. Li, A.V. Malakhov, A.N. Polilov, 
Optimization design and 3D printing of curvilinear fiber reinforced variable 
stiffness composites, Compos. Sci. Technol. 201 (2021) 108502, https://doi.org/ 
10.1016/j.compscitech.2020.108502. 

[32] V.S. Papapetrou, C. Patel, A.Y. Tamijani, Stiffness-based optimization framework 
for the topology and fiber paths of continuous fiber composites, Compos. Part B. 
183 (2020) 107681, https://doi.org/10.1016/j.compositesb.2019.107681. 

[33] G.W. Melenka, B.K.O. Cheung, J.S. Schofield, M.R. Dawson, J.P. Carey, Evaluation 
and prediction of the tensile properties of continuous fiber-reinforced 3D printed 
structures, Compos. Struct. 153 (2016) 866–875, https://doi.org/10.1016/j. 
compstruct.2016.07.018. 

[34] D.L. Logan, A First Course in the Finite Element Method, Nelson, 2007. 
[35] M. Duan, S. He, Continuous fiber path optimization in composite additive 

manufacturing, in: Proc. of the ASME 2023 Manuf. Sci. Eng. Conf., New Brunswick, 
US, 2023. 

[36] Anisoprint, Basic sPecifications, (n.d.). 〈https://anisoprint.com/solutions/desktop 
/〉. 

[37] ASTM, Standard Test Method for Tensile Properties of Plastics (2022) 16, https:// 
doi.org/10.1520/D0638-22. 

[38] J. Koko, A Matlab mesh generator for the two-dimensional finite element method, 
Appl. Math. Comput. 250 (2015) 650–664, https://doi.org/10.1016/j. 
amc.2014.11.009. 
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